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Translational selection and molecular evolution
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An interplay among experimental studies of protein synthesis,
evolutionary theory, and comparisons of DNA sequence data
has shed light on the roles of natural selection and genetic drift
in ‘silent’ DNA evolution.
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Introduction

Both functional and fitness consequences of synonymous
codon usage have been identified in a number of taxa
through a combination of biochemical studies of protein
synthesis and analyses of DNA sequences. A balance among
mutational processes, genetic drift, and selection to enhance
the efficiency of protein synthesis, ‘major codon prefer-
ence’, appears to explain patterns of codon usage at a large
fraction of silent sites. In this review, we begin with a brief
summary of patterns of codon usage that suggest transla-
tional selection for major codons. We then discuss the
biochemical basis of adaptation at silent sites and present
recent evidence both supporting and motivating modifica-
tions to the simple form of major codon preference. Finally,
we discuss the role of translational selection in the evolution
of both amino acid composition and protein size.

Patterns of codon usage: major

codon preference

A number of patterns of base composition and DNA
sequence variation suggest that natural selection discrimi-
nates among synonymous codons to enhance protein
synthesis [1,2]. In Escherichia coli and Saccharomyces cerevisi-
ae, genome-wide base composition at silent sites is biased
toward a subset of ‘major’ codons for each amino acid.
Among synonymous codons recognized by multiple
tRNAs, major codons tend to be encoded by abundant
tRNAs, and among synonymous codons recognized by a
single tRNA, major codons generally show perfect
Watson-Crick base pairing with the tRNA anticodon [3-8].
In vivo experiments in K. co/i suggest that major codons
can increase both the speed and the accuracy of translation
[1,9]. Such codons could enhance fitness by increasing
growth rates and/or by reducing the metabolic costs of pro-
tein synthesis. Correlations between tRNA pools and
codon usage have also been noted in the genomes of
Salmonella typhimurium [10), Mycoplasma capricolum [11],
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Codon bias and protein abundance in E. coli. Codon adaptation index
(CAI) [72] values are plotted against protein concentration (molecules
per cell) for 46 E. coli genes. CAl values are a positive function of
codon bias. Figure from [14].

bacteriophage "I'7 [12], and, more recently, in the nuclear
genome of Drosophila melanogaster [13°].

Although overall patterns of codon usage correlate with
tRNA pools in many species, codon bias varies consider-
ably among genes within their genomes. In E. co/i and
yeast, major codon usage shows a strong correlation with
gene expression levels (Figure 1) [6,10,14-16]. Such pat-
terns are consistent with major codon preference
because the fitness benefit of a translationally superior
codon should increase with the number of aminoacyl-
tRNA selections it experiences. Similar relationships
have been established in a number of other prokaryotes
[17-20] and fungi [21-23], as well as in the nuclear
genomes of D. melanogaster [24], Arabidopsis thaliana [25],
Dictyostelium discoideum [26], Caenorhabditis elegans [27],
and in the chloroplast genomes of a number of plant and
algal lincages [28].

Population genetic tests of major codon
preference

The simplest model of major codon preference is an evolu-
tionary balance among natural selection favoring
translationally superior major codons and mutation pressure
and genetic drift allowing the presistence of slightly dele-
terious minor codons [29,30]. Population genetics theory
predicts an inverse relationship between the efficacy of nat-
ural selection at a given nucleotide site and genetic linkage
to other selected sites [29,31-35]. Under major codon pref-
erence, the effectiveness of selection, and thus levels of
codon bias, should be a positive function of regional rates of
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Population genetics of silent DNA mutations in D. simulans. (a) The
expected proportions of preferred and unpreferred mutations found
segregating within, or fixed between, populations were calculated
according to the findings of Sawyer and Hartl [73] for a sample of
five alleles and ty;,, time of divergence scaled to N, generations, of
0.6. The x-axis represents the number of alleles in which newly
arisen mutations are present. The histogram shows the expected

proportion of mutations in each frequency class under a two-state
model of mutation-selection-drift with the scaled fitness difference,
N,s, between major and minor codons set to one. (b) Observed
proportions of preferred and unpreferred silent mutations in a
sample of five alleles of each of eight D. simulans genes. Data were
pooled across loci. Adapted from [38°] (see reference for details of
the method).

recombination. Kliman and Hey [36] showed that, in the
D. melanogaster genome, genes in regions of reduced cross-
ing-over show lower codon bias relative to genes located in
regions of higher recombination.

Selection for codon bias also predicts differences in the
evolutionary dynamics of putative fitness classes of silent
mutations interspersed within a region of DNA [37].
Under major codon preference, silent mutations from non-
major to major codons, ‘preferred’ mutations, should
confer a small fitness benefit to the organism. Mutations in
the reverse direction, ‘unpreferred’ mutations, should
incur a fitness cost of the same magnitude. Comparisons of
the within and between species evolutionary dynamics of
preferred and unpreferred mutations have revealed pat-
terns quite similar  to those predicted by
mutation-selection-drift [38°] (Figure 2).

Finally, measures of silent DNA divergence are inversely
related to synonymous codon usage bias between E. co/i
and 8. oyphemurium 39,401, D. melanogaster and D. pseudoob-
scura [41-43), C. elegans and C. briggsae [44,45], and among
land plant chloroplast genes [46]. Although such patterns
are qualitatively consistent with greater ‘selective con-
straint’ in highly expressed genes, the quantitative
relationship between codon bias and silent divergence may
not fit that predicted by major codon preference [47]. For
some synonymous families in K. co/, the relationship
between substitution rate and expression level does not
appear to be related to codon bias.

Biochemical bases of selection at silent sites
Although the patterns discussed above strongly support the
notion that major codons are generally favorable, the rela-
tionship between codon usage, the biochemistry of protein
synthesis, and the fitness of organisms in populations is only
beginning to emerge. At least three facets of translation could
be affected by synonymous codon usage: the rate of elonga-
tion, the cost of proofreading, and the accuracy of translation
(including rates of missense and processivity errors) [30,48].
During protein synthesis, a ribosome waits at a particular
codon for the arrival of an aminoacyl-tRNA. This process is
potentially costly: ribosomes are relatively expensive to syn-
thesize, and the time for which they are idle should be
minimized. Once the tRNA is bound to the RNA in the ribo-
some, elongation factor Tu is released with the hydrolysis of
G'TP. This reaction, known as ‘substrate’ or ‘kinetic’ proof-
reading, provides extra time to discern whether the correct
tRNA is bound to the mRNA but the process is energetical-
ly costly: if the tRNA is rejected it must be recharged with
elongation factor and G'TP. In addition, despite proofreading,
incorrect amino acids can be misincorporated into the grow-
ing peptide chain with the possibility that the protein
produced will be either functionless or of reduced activity.
Finally, the ribosome can undergo processivity errors while
translocating, such as ‘slipping’ out of frame or ‘dropping oft’
(premature termination) from the mRNA. Such errors are
likely to result in dysfunctional proteins.

In vivo experiments in E. co/i have shown that, during
polypeptide chain elongation, the speed of aminoacyl-tRNA
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Codon bias and gene length in (@) D. melanogaster, (b) E. coli, and
(c) S. cerevisae. The means and standard deviations of a measure of
codon bias, the effective number of codons (ENC) [74], are plotted for

five length categories. The number of genes included in each category
is shown in parentheses. ENC is inversely related to the degree of
codon usage bias. Adapted from [58°*].

selection at a given codon is proportional to the cognate
tRNA’s abundance [49]. Faster cognate tRNA recognition
could confer a fitness advantage by enhancing any, or all, of
the three facets of translation. But which, if any, of these
processes determines the fitness effects of synonymous
codon usage? The quantitative relationship between tRNA
concentration and codon usage in E. co/i grown under a vari-
ety of conditions [50] shows a remarkably good fit to the
predictions of a model of growth optimization through selec-
tion for enhanced translational elongation rates [51°°]. Berg
and Silva [52°°], however, have found that the correspon-
dence between rates of eclongation and patterns of
synonymous codon bias in one synonymous family is not
strong. The glutamic acid codon GAA is translated
[B.5 times faster than its synonym GAG, irrespective of con-
text in K. co/i [53]. Although selection to maximize the rate
of elongation should favor GAA over GAG in all contexts,
the frequency of GAA compared to GAG only increases
with expression level among glutamic acid codons followed
by G (i.e. GAA.G is increasingly favoured over
GAG.G) [52°°]. It is possible that mutational biases or other
selection pressures, perhaps on local nucleotide composi-
tion, may act against GAG.nonG in E. co/i.

Berg and Kurland’s model of selection for translational
elongation rates is consistent with the relationship between
codon use and tRNA pools [51°°] but similar models of
selection on proofreading costs and translational accuracy
have not been as thoroughly investigated. Two lines of evi-
dence from DNA sequence comparisons suggest that the
reduction of translational misincorporation rates also con-
fers a fitness advantage to major codons. The fitness cost of
errors in protein synthesis should be a function of the num-
ber and size of dysfunctional peptides produced. If natural
selection biases codon usage to enhance translational accu-
racy, then, within a gene, selection should be stronger at
codons encoding constrained amino acids — those at which
a misincorporation would disrupt protein function — than

at codons encoding less constrained amino acids. In
D. melanogaster, higher major codon usage in DNA-binding
motifs than elsewhere in transcription factor genes and in
conserved than non-conserved amino acid positions in
interspecific comparisons of proteins are consistent with
codon selection for translational accuracy [54]. Such a pat-
tern is not observed iz E. coli [55]. Interestingly, although
analyses of codon usage in mammals is complicated by
large-scale patterns of base compositional bias [56], a simi-
lar correlation between silent and protein rates of evolution
within loci suggests either that mutational biases vary with-
in genes or that codon selection for translational accuracy
also acts in mammals [57°].

Selection for translational accuracy also predicts a relation-
ship between gene length and codon bias. Given the same
level of expression, the energetic cost of producing dys-
functional peptides should be a function of their size.
Eyre-Walker [14] showed that, for E. co/i genes encoding
proteins found in equimolar amounts, codon bias is indeed
a function of gene length. Such a pattern has also been
found among yeast ribosomal proteins [58°¢].

Moriyama and Powell [58°°] have studied genome-wide rela-
tionships between codon bias and protein length in E. co/i,
S. cerevisiae, and D. melanogaster. Surprisingly, codon bias
increases in larger proteins in E. co/i but decreases in S. cere-
visiae and D. melanogaster (Figure 3). 'The interpretation of
such patterns is complicated by the multiplicity of factors
that could influence the relationship between protein size
and codon bias. Given the same level of expression and pro-
tein functional constraint, selection for translational accuracy
predicts that longer genes should show greater codon bias. If
expression levels differ among genes, however, then selec-
tion to decrease protein size — perhaps in the face of
selection for protein stability or function — should be a pos-
itive function of expression levels. Finally, the efficacy of
selection at a given nucleotide site is inversely related to the
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mutation rate to deleterious mutations at linked sites [29,35].
Silent sites in longer genes may be linked to a greater num-
ber of deleterious mutations (at both silent and replacement
sites) resulting in reduced codon bias relative to smaller
genes ([29]; ]M Comeron, M Kreitman, personal communi-
cation). As the three forces may act simultaneously,
disentangling among their contributions may require analy-
ses of more genomes to identify how recombination rates and
gene expression levels influence the relationship between
gene length and codon bias.

Conflicting selection pressures: evidence for
antagonistic pleiotropy at silent sites

Although the benefits of major codon usage are well estab-
lished, our understanding of the persistence of
translationally suboptimal codons is less clear. Mutation
pressures and genetic drift may account for many, if not
most, minor codons, but both biochemical studies and
sequence comparisons suggest that, at particular locations
within genes, minor codons may be beneficial. For exam-
ple, in E. co/i, programmed frameshift events can require
ribosomal pausing during elongation and slippage of the
translational apparatus on the mRNA. Some such events
depend on the use of minor codons [59,60°]. Furthermore,
proper intracellular protein folding may require transla-
tional pauses, mediated by minor codon usage or mRNA
structure, at specific locations within genes [61].

Several patterns of DNA sequence variation also support
the notion that minor codons can be advantageous. In
E. coli, reduced codon bias and silent divergence at the start
of genes [62-65] may reflect constraints imposed by ribo-
some binding [64]. Similar patterns have been discovered
recently in D. melanogaster [66°]. Major codon usage also
decreases at the end of E. co/i genes; apparently due, in
part, to the fact that many genes overlap the Shine-
Dalgarno, or coding sequence, of the next gene on the
chromosome [65]. Finally, Maynard Smith and Smith [67]
have shown that some sites in the middle of genes are occu-
pied by a minor codon across a wide range of very diverged
enteric bacteria. This suggests that natural selection may
favor the persistence of apparently translationally inferior
codons; however, the functional basis and relative frequen-
cy of minor codon preference remains to be established.

Conclusions: translation selection and protein
evolution?

"This review has focussed on translational selection at silent
sites. The body of evidence supporting major codon pref-
erence has increased in the past several years through new
methods and in a larger number of genomes. At the same
time, some intriguing data have emerged that suggest that
this model may require some refinement; minor codons
may also be preferred at certain sites.

The contribution of translational selection in protein evo-
lution has been the object of far less attention.
As discussed above, protein length may be reduced to a

greater extent in highly expressed genes in order to maxi-
mize the efficiency of translation. In addition, if tRNAs for
some amino acids are translated more efficiently or accu-
rately than others (or if some amino acids are less
energetically costly to synthesize [68°]), then codons
encoding such amino acids could also be favored at the
level of translation. In Mycoplasma capricolum and E. coli
[11], as well as in yeast [69°], tRNA pools match the amino
acid usage of proteins, and in E. co/i, the amino acid com-
position of proteins differs among highly and lowly
expressed genes [70]. It is possible that tRNA pools are
simply selected to match the amino acid composition of
highly expressed proteins. Alternatively, tRNA pools and
the amino acid composition of proteins may be co-adapted
to enhance translational efficiency. Andersson and Kurland
[71] have put forth convincing evidence that genomic evo-
lution can drive the evolution of the translational system.
It will be of great interest to determine the extent to which
the converse holds; translational selection may play an
important role in patterning both silent and replacement
nucleotide composition as well as protein and genome size.
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