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Biosynthesis of an Escherichia coli cell, with organic compounds as
sources of energy and carbon, requires approximately 20 to 60
billion high-energy phosphate bonds [Stouthamer, A. H. (1973)
Antonie van Leeuwenhoek 39, 545–565]. A substantial fraction of
this energy budget is devoted to biosynthesis of amino acids, the
building blocks of proteins. The fueling reactions of central me-
tabolism provide precursor metabolites for synthesis of the 20
amino acids incorporated into proteins. Thus, synthesis of an
amino acid entails a dual cost: energy is lost by diverting chemical
intermediates from fueling reactions and additional energy is
required to convert precursor metabolites to amino acids. Among
amino acids, costs of synthesis vary from 12 to 74 high-energy
phosphate bonds per molecule. The energetic advantage to en-
coding a less costly amino acid in a highly expressed gene can be
greater than 0.025% of the total energy budget. Here, we provide
evidence that amino acid composition in the proteomes of E. coli
and Bacillus subtilis reflects the action of natural selection to
enhance metabolic efficiency. We employ synonymous codon us-
age bias as a measure of translation rates and show increases in the
abundance of less energetically costly amino acids in highly ex-
pressed proteins.

Even if a substituted amino acid were truly neutral in a
functional sense, it is highly unlikely that factors involved
in the synthesis of the protein would render the substi-
tution neutral in the broader sense of the organism’s
integrated functioning. The substituted amino acid must
be present within the cell in equivalent quantity com-
pared with the original amino acid and, indeed, its
synthesis or derivation from other molecules and trans-
port into the cell require an equivalent amount of energy
output.

R. C. Richmond (1)

Mutational processes and relationships between primary
structure and function are considered to be the major

determinants of both amino acid composition and rates of
protein evolution (2–4). Natural selection preserves or enhances
protein specificity, activity, or stability by favoring codons that
encode particular amino acids in gene regions corresponding to
critical locations in the primary structure of proteins. At less
constrained locations, a combination of mutation pressure and
genetic drift account for encoded amino acids. A number of
studies have established that differences in mutational biases
explain some of the variation in amino acid composition among
bacterial species (5–8). However, the relationship between the
efficiency and energetics of protein synthesis and the primary
structure of proteins has received less attention.

Metabolic constraints on protein structure could include the
energetic costs of amino acid biosynthesis (1, 9–13), the bio-
chemical complexity of synthetic pathways (9, 11, 12), availability
of nutrients (14–16), and the speed and accuracy of protein
synthesis (10, 17–20). Here, we investigate relationships between
metabolic costs of amino acid biosynthesis and proteome-wide

patterns of amino acid composition in bacterial cells. Amino acid
biosynthesis requires diversion of chemical intermediates from
different locations in the fueling reaction pathways of central
metabolism. Energy, in the form of high-energy phosphate
bonds (‘‘�P’’) and reducing power (‘‘H’’), is lost through diver-
sion of intermediates from fueling reactions and further energy
is required to convert starting metabolites to amino acids.

If a substantial fraction of amino acids are synthesized in
bacterial cells and energy is limiting to survival or reproduction,
then the amino acid composition of proteins encoded in the
genome should be biased toward less energetically costly amino
acids. The extent to which amino acid composition is biased to
reduce metabolic costs should be a positive function of the
numbers of proteins synthesized, per generation, from each
gene. We calculate the energetic costs of amino acid biosynthesis
and test for associations between estimated gene expression
levels and selection for metabolic efficiency in the proteomes
encoded in the Escherichia coli and Bacillus subtilis genomes.

Materials and Methods
Costs of Biosynthesis. Costs of precursor metabolites were calcu-
lated according to Craig and Weber (12), employing energetic
inputs and gains through the Embden–Meyerhof–Parnas (EMP)
pathway and the tricarboxylic acid (TCA) and the pentose
phosphate cycles (21). We assume the availability of ammonia
and sulfate as nonlimiting sources of nitrogen, and sulfur,
respectively (the energetic cost of the reduction of sulfate to H2S
is included in the costs of Met and Cys). Costs of precursors were
calculated separately for growth on glucose, acetate, and malate
as sources of carbon and energy (see Table 6, which is published
as supporting information on the PNAS web site, www.pnas.org).
Energetic costs for amino acid biosynthesis from precursor
metabolites were calculated for E. coli (21, 22), and each pathway
was confirmed in B. subtilis by identifying homologs to E. coli
enzyme genes by using the KEGG (Kyoto Encyclopedia of
Genes and Genomes; ref. 23) and WIT (What Is There; ref. 24)
databases. The presence of a transaminase that catalyzes the
conversion of pyruvate to Ala (22) has not been confirmed in
either of the proteomes examined, but the pathway was assumed
to exist.

E. coli and B. subtilis Protein-Coding Genes. B. subtilis ORF data
(25) were obtained from the National Center for Biotechnology
Information database at http:��ncbi.nlm.nih.gov:80�cgi-bin�
Entrez�altik?gi�278-db-Genome and information on gene
product functional classification was obtained from the Micado
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database (26) (Release 6.1) at http:��locus.jouy.inra.fr�cgi-bin�
genmic�madbase�home.pl. E. coli ORF data (27) (version M52)
and gene product functional classification (27, 28) were obtained
from http:��www.genome.wisc.edu�. In both genomes, ORFs
identified as candidates for horizontal transfer from other
genomes (29) were excluded from the analyses. Genes identified
as phage-related or transposable elements were also excluded.
Finally, genes showing recent common ancestors (paralogs) were
eliminated by performing unfiltered BLAST (30) searches among
all pairs of proteins encoded in each genome. Pairs of amino acid
sequences showing alignments with at least 60% identity over 60
or more amino acids were formed into clusters and one gene
from each cluster was included in the data analyzed. These data
are available upon request from H.A.

Major Codons. Kanaya et al. (31) identified major codons through
correspondence analysis of synonymous codon usage in the
genomes of E. coli and B. subtilis. Within each synonymous
family, codons that contribute positively to the major trend in
codon usage were designated as major codons. Major codon
usage, MCU, � (number of major codons)�(number of major
codons � number of minor codons) in each gene. Only genes
with 100 or more codons (excluding start and stop codons) were
analyzed. Codons for Lys (AAR) and Glu (GAR) show strong
context dependence (32) and were not included in the calcula-
tion of MCU for E. coli. The numbers of genes used in each
analysis are given in Results.

Amino Acid Compositional Analyses. Analyses of relationships be-
tween MCU and amino acid composition were conducted both
for entire proteomes and within functional classes of B. subtilis
and E. coli proteins. Spearman rank correlations were used in the
whole-proteome analyses. In analyses within functional catego-
ries, amino acid usage was compared between genes falling
above and below the median MCU value among all genes (0.473
and 0.577 for B. subtilis and E. coli, respectively) to allow
comparisons within categories with a small number of genes.
Counts of amino acids were tabulated for genes in the high and
low codon bias classes, and amino acid abundance was compared
in 2 � 2 contingency tables. The columns of the tables were the
high and low codon bias classes and the rows consisted of the
counts of a particular amino acid and the pooled counts for all
other amino acids. The Mantel–Haenszel procedure (33) was
used to calculate an overall probability for departures from equal
amino acid usage among low and high bias genes across 2 � 2
contingency tables from different functional categories. Func-
tional categories consisting of fewer than 10 genes were excluded
from the analyses. In addition, genes falling into the following
classes were excluded: ‘‘similar to proteins from other organ-
isms,’’ ‘‘similar to proteins from B. subtilis,’’ ‘‘miscellaneous,’’
and ‘‘no similarity,’’ for B. subtilis and ‘‘hypothetical, unclassi-
fied, unknown’’ and ‘‘other known genes’’ for E. coli.

Results
Metabolic Costs of Amino Acid Biosynthesis. The fueling reactions of
central metabolism provide precursor metabolites for synthesis
of the 20 amino acids incorporated into proteins. The diversions
of amino acid biosynthetic pathways from the Embden–
Meyerhof–Parnas pathway and the tricarboxylic acid and pen-
tose phosphate cycles of central metabolism are shown in Fig. 1.
The metabolic costs of synthesizing the 20 amino acids used in
proteins are shown in Table 1. The cost of using a particular
precursor metabolite is the number of high-energy phosphate
bonds, �P, carried in ATP and GTP, plus the number of
available hydrogen atoms, H, carried in NADH, NADPH, and
FADH2, that would have been gained if the metabolite had
remained in energy-producing pathways minus the numbers of
these molecules gained before diversion. For each amino acid,

the energetic requirements of its biosynthetic pathway are added
to the costs of its starting metabolite(s) to obtain a total
metabolic cost per molecule synthesized. Amino acids that
require chemical intermediates early in fueling reaction path-
ways (the aromatic amino acids and His) are more costly than
those derived from intermediates downstream in glycolysis (the
serine family) and the tricarboxylic acid cycle (the aspartate and
glutamate families). Energetic costs were converted to a com-
mon currency of �P based on a proportion of two �P per H (34).
Although precursor costs depend on the particular source of
carbon, costs of amino acid biosynthesis were highly correlated
for growth on different substrates (glucose vs. acetate, r2 �
0.968; glucose vs. malate, r2 � 0.998). In the analyses below, we
employ the average cost of biosynthesis for each amino acid for
growth on the three substrates. All results were similar for costs
calculated assuming a single carbon source.

Correlation Between Metabolic Costs and Synonymous Codon Usage
Bias. We calculated both average cost per encoded amino acid
and major codon usage, MCU, for each of 3,055 B. subtilis and
3,397 E. coli genes. Correlations between cost and MCU are
negative and highly statistically significant [Spearman rank
correlation, B. subtilis: n � 3,055, rS � �0.383, Z � 22.92, P �
10�5; E. coli: n � 3,397, rS � �0.240, Z � 14.43, P � 10�5]. The
proportion of among-gene variation in the ranks of energetic

Fig. 1. Fueling reactions and amino acid biosynthetic pathways in E. coli.
Fueling reactions and amino acid biosynthetic pathways are shown as black
and blue arrows, respectively. Abbreviations for precursor metabolites are
given in Table 1. The numbers of arrows do not reflect the numbers of steps
in the biosynthetic pathways. The major anapleurotic pathway, which replen-
ishes oxaloacetate (oaa) in the tricarboxylic acid (TCA) cycle, is shown in
yellow.
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cost�codon explained by MCU is 14.4% in B. subtilis and 5.0%
in E. coli. Two factors may contribute to the scatter in these
relationships. First, the use of MCU as an estimate of gene
expression levels is expected to entail error (35, 36). In addition,
protein function may require particular amino acids at specific
locations in the primary structure; the fitness benefit of relatively
expensive amino acids may outweigh their energetic costs at
functionally constrained positions. Comparisons of average costs
for large numbers of codons should diminish noise attributable
to such effects and reveal global forces that increase in magni-
tude with gene expression.

Fig. 2 shows correlations between average energetic costs and
major codon usage for genes binned into MCU classes of �
50,000 codons. In both B. subtilis and E. coli, a strikingly high
proportion (92.0% and 79.5%, respectively) of the variation in
average costs of synthesis is explained by a linear relationship
with major codon usage. A greater mutational pressure toward
A�T nucleotides in the B. subtilis genome (25) may contribute to
larger differences in amino acid composition as a function of
selection intensity. On average, A�T-rich codons tend to encode
more costly amino acids.

Separate Analyses of Metabolic Costs and Codon Bias for H and �P.
We examined several factors that might confound the interpre-
tation of these relationships between amino acid composition
and gene expression levels. First, in the analyses above, energetic
costs were converted to numbers of �P based on a proportion
of two �P per H (through oxidative phosphorylation). However,
in E. coli, this ratio may depend on growth conditions—i.e.,
availability of O2 (34). Separate analyses of energetic costs for
numbers of �P (B. subtilis: rS � �0.351, Z � 20.72, P � 10�5;

E. coli: rS � 0.252, Z � 15.15, P � 10�5) and for numbers of H
(B. subtilis: rS � �0.355, Z � 20.98, P � 10�5; E. coli: rS � 0.200,
Z � 11.89, P � 10�5) both show negative correlations with major
codon usage. Thus, negative associations between energetic
costs and codon usage bias do not depend on the conversion
between reducing power and phosphate bonds.

Metabolic Costs and Codon Usage Bias Within Functional Categories of
Proteins. Proteins in different functional categories may differ in
both compositional constraints and expression levels. Such re-

Table 2. Energetic costs and MCU within functional classes of
B. subtilis proteins

Functional classification No. of genes rS Z

Transport�binding proteins �

lipoproteins
336 �0.350 6.83*

Metabolism of carbohydrates � related
molecules

229 �0.373 6.06*

RNA synthesis 200 �0.184 2.64
Metabolism of amino acids � related

molecules
183 �0.334 4.77*

Sporulation 101 �0.454 5.07*
Metabolism of coenzymes � prosthetic

groups
89 �0.296 2.89*

Cell wall 78 �0.500 5.04*
Metabolism of lipids 71 �0.367 3.28*
Protein synthesis 71 �0.380 3.42*
Membrane bioenergetics (electron

transport chain � ATP synthase)
67 �0.523 4.95*

Adaptation to atypical conditions 65 �0.487 4.43*
Metabolism of nucleotides�nucleic acids 60 �0.138 1.06
Detoxification 55 �0.019 0.14
Mobility � chemotaxis 45 �0.250 1.69
Sensors (signal transduction) 36 �0.139 0.82
Protein folding and modification 34 �0.594 4.17*
DNA restriction�modification�repair 30 �0.066 0.35
Antibiotic production 26 �0.078 0.38
Germination 23 �0.310 1.50
Cell division 20 �0.490 2.39
DNA replication 20 �0.132 0.57

Functional categories are from the Micado (26) database. rs and Z values are
shown for Spearman rank correlations between cost per amino acid and MCU.
Data are shown for categories containing at least 20 genes. *, P � 0.05,
sequential Bonferroni test (37), one-tailed.

Table 1. Metabolic costs of amino acid biosynthesis in E. coli

Amino acid
One-letter

symbol
Precursor

metabolites

Energetic cost

�P H Total, �P

Ala A pyr 1.0 5.3 11.7
Cys C 3pg 7.3 8.7 24.7
Asp D oaa 1.3 5.7 12.7
Glu E �kg 2.7 6.3 15.3
Phe F 2 pep, eryP 13.3 19.3 52.0
Gly G 3pg 2.3 4.7 11.7
His H penP 20.3 9.0 38.3
Ile I pyr, oaa 4.3 14.0 32.3
Lys K oaa, pyr 4.3 13.0 30.3
Leu L 2 pyr, acCoA 2.7 12.3 27.3
Met M oaa, Cys, �pyr 9.7 12.3 34.3
Asn N oaa 3.3 5.7 14.7
Pro P �kg 3.7 8.3 20.3
Gln Q �kg 3.7 6.3 16.3
Arg R �kg 10.7 8.3 27.3
Ser S 3pg 2.3 4.7 11.7
Thr T oaa 3.3 7.7 18.7
Val V 2 pyr 2.0 10.7 23.3
Trp W 2 pep, eryP,

PRPP, �pyr
27.7 23.3 74.3

Tyr Y eryP, 2 pep 13.3 18.3 50.0

Abbreviations for starting metabolites: penP, ribose 5-phosphate; PRPP,
5-phosphoribosyl pyrophosphate; eryP, erythrose 4-phosphate; 3pg, 3-phos-
phoglycerate; pep, phosphoenolpyruvate; pyr, pyruvate; acCoA, acetyl-CoA;
�kg, �-ketoglutarate; oaa, oxaloacetate. Costs of precursors reflect averages
for growth on glucose, acetate, and malate (see Table 6 in supporting infor-
mation). Negative signs on precursor metabolites indicate chemicals gained
through biosynthetic pathways. �P and H refer to numbers of high-energy
phosphate bonds contained in ATP and GTP molecules and numbers of
available hydrogen atoms carried in NADH, NADPH, and FADH2 molecules,
respectively. The total cost assumes 2 �P per H.

Fig. 2. Correlations between energetic costs and MCU in B. subtilis (A) and
E. coli (B) genes. The average cost per amino acid is plotted against average
MCU for bins of genes. Genes were ranked by MCU and data were pooled from
low to high MCU values until 50,000 codons was reached for each bin. Data for
the highest MCU class were pooled with the second highest class if the
remaining number of codons was less than 25,000. Bars indicate 95% confi-
dence intervals on the estimates of mean costs. The bin size was chosen to be
50,000 codons so that data could be compared for at least 20 points.
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lationships could indirectly result in associations between ener-
getic costs and MCU. To control for such effects, we examined
associations between energetic costs and MCU within functional
categories (Tables 2 and 3). Correlations (rs values) between
costs and gene expression levels were negative in all 26 B. subtilis
and 19 E. coli functional categories (Signs test, P � 10�5 in both
species).

Metabolic Costs and Codon Usage Bias Within Physicochemical Classes
of Amino Acids. Amino acids differ in physicochemical properties
and evolutionary substitutability. Zubay (21) divides amino acids
into three broad categories. ‘‘Internal’’ amino acids (Phe, Leu,
Ile, Met, Val) have hydrophobic R groups and are generally
found in the interior of protein three-dimensional structures.
‘‘External’’ amino acids (His, Arg, Lys, Gln, Glu, Asn, Asp) have
hydrophilic R groups and are most often found in solvent-
exposed regions of proteins. Finally, amino acids that function in
either category are classified as ‘‘ambivalent’’ (Trp, Tyr, Cys,
Ala, Ser, Gly, Pro, Thr).

We tested for correlations employing costs of biosynthesis
calculated within exterior, interior, and ambivalent classes of
amino acids. Fig. 3 shows strong negative relationships between
energetic cost and MCU in each of these classes in both genomes
examined (B. subtilis: internal, rS � �0.277, Z � 15.93, P � 10�5;
external, rS � �0.226, Z � 12.82, P � 10�5; ambivalent, rS �
�0.204, Z � 11.54, P � 10�5; E. coli: internal, rS � �0.091, Z �
5.31, P � 0.002; external, rS � �0.139, Z � 8.19, P � 10�5;
ambivalent, rS � �0.202, Z � 12.03, P � 10�5). The ratio of
amino acids falling into different physicochemical categories
may differ among proteins expressed at different levels [e.g., in
Saccharomyces cerevisiae, mRNA abundances are lower for
integral membrane protein genes than for cytosolic protein
genes (38)]. However, such differences do not appear to explain
reduced energetic costs of highly expressed proteins.

We examined other restricted data sets to distinguish meta-
bolic economics from other processes that could contribute to
among-gene variation in amino acid composition (see supporting

information on the PNAS web site, www.pnas.org). Negative
correlations between metabolic costs and synonymous codon
bias remained highly statistically significant for analyses employ-
ing major codon usage for a single amino acid (to control for
relationships between MCU and amino acid composition), for
analyses excluding the first and last 50 codons of genes (which
may be under additional nucleotide compositional constraints),
and for analyses performed separately among proteins encoded
by the leading and lagging DNA strands (which may experience
differences in mutational patterns).

Gene Expression and Amino Acid Composition. Amino acids that
increase or decrease in abundance as a function of MCU were
identified both in the whole proteome and within functional
categories of proteins (Table 3). Spearman rank correlations
were performed to determine the probabilities of changes in
abundance with MCU among the 3,055 and 3,397 genes from B.
subtilis and E. coli, respectively. Within each functional category,
amino acid usage was compared between high and low MCU
classes. Mantel–Haenszel tests were performed to evaluate
whether particular amino acids increase or decrease with MCU
across categories. Amino acids that show statistically significant
associations with MCU in both analyses are shown in Fig. 4.

Correlations in the abundances of different amino acids (9)
and relationships between amino acid composition and gene
expression (10, 13, 20) have been noted previously in unicellular
microorganisms. Our analyses show that the abundances of many
amino acids also change within broad functional categories of

Table 3. Energetic costs and MCU within functional classes of
E. coli proteins

Functional classification No. of genes rS Z

Transport � binding proteins 251 �0.084 1.33
Putative enzymes 237 �0.113 1.74
Energy metabolism 211 �0.079 1.15
Central intermediary metabolism 159 �0.217 2.78*
Cell processes (including adaptation,

protection)
155 �0.177 2.22

Translation, post-translational
modification

151 �0.236 2.96*

Cell structure 138 �0.168 1.99
Putative transport proteins 132 �0.213 2.48
Putative regulatory proteins 120 �0.318 3.65*
Carbon compound catabolism 112 �0.113 1.19
Amino acid biosynthesis � metabolism 111 �0.045 0.47
DNA replication, recombination,

modification � repair
100 �0.408 4.42*

Biosynthesis of cofactors, prosthetic
groups � carriers

96 �0.196 1.94

Nucleotide biosynthesis � metabolism 57 �0.211 1.60
Transcription, RNA processing,

degradation
48 �0.265 1.86

Fatty acid � phospholipid metabolism 47 �0.372 2.69
Regulatory function 42 �0.045 0.29
Structural proteins 38 �0.172 1.05

Functional categories are from Blattner et al. (27). See Table 2 legend.

Fig. 3. Correlations between energetic costs and codon bias within physi-
cochemical categories of amino acids. Average cost per amino acid was
calculated among amino acids that tend to be found in internal, or non-
solvent-exposed (F, L, I, M, V) and external, or solvent-exposed (H, R, K, Q, E,
N, D) regions of proteins. Amino acids that function in both categories are
classified as ambivalent (W, Y, C, A, S, G, P, T). Data are shown for MCU bins as
described in the legend of Fig. 2. See Table 1 for one-letter amino acid symbols.
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proteins as a function of estimates of translation rates (Table 4).
Fig. 4 shows relationships between changes in amino acid
abundance and biosynthetic costs. In both B. subtilis and E. coli,
Trp, Phe, His, Cys, and Leu decrease in frequency in highly
expressed genes, and less costly amino acids such as Glu, Asp,
and Gly increase in abundance. These patterns also suggest that
simple mutational differences related to transcription rates do
not account for the relationship between costs and codon bias.
Amino acids encoded by AT-rich codons (Phe, Tyr, Met, Ile,
Asn, Lys) and those encoded by GC-rich codons (Gly, Ala, Arg,
Pro) do not show common trends related to gene expression.

Discussion
Biosynthesis of an E. coli cell, with organic compounds as sources
of energy and carbon, requires approximately 20 to 60 billion �P
(39). The energetic requirement for amino acid biosynthesis for
a given codon in the genome is the product of the cost per
encoded amino acid and the number of times the codon is
translated. Abundant E. coli proteins are found in concentrations
of 50,000–100,000 molecules per cell (34, 40); the energetic
savings for a single amino acid replacement in a highly expressed
gene can be millions of �P or greater than 0.025% of the total
energy budget for biosynthesis of macromolecules. Less abun-
dant proteins, however, may be in concentrations as low as a few
molecules per cell. This 105-fold difference in the metabolic costs
of amino acid usage should translate to among-gene differences
in the fitness benefit to encoding less energetically costly amino
acids. If survival or reproduction is, at least at times, energy-
limited in bacteria, natural selection should act more strongly,
and produce a greater skew toward metabolically efficient amino
acids, as a positive function of gene expression levels. Both E. coli
and B. subtilis may often grow in nutrient-rich conditions (in the
mammalian lower intestine and soil, respectively) where growth
may not be energy-limited and where they may obtain a sub-
stantial fraction of their amino acids from their environments
rather than through biosynthesis. However, periodic selection in
nutrient-depleted conditions may be sufficient to skew amino
acid composition. Our analyses do not address the duration or
severity of energy limitation required to generate associations
between amino acid composition and gene expression levels.

The predicted association between amino acid composition
and gene expression requires tight regulation of amino acid
biosynthetic pathways according to the chemical requirements of
the cell. In bacteria, both end-product inhibition of biosynthetic
enzymes and transcriptional control of biosynthesis operons
contribute to fine-tuned control of amino acid concentrations
(21). DNA microarray analyses of mRNA levels show strong
induction of amino acid biosynthesis genes in E. coli growing in
glucose minimal medium (with ammonia as the sole nitrogen
source) relative to cells in rich medium (containing amino acids)
(41). This induction is pronounced for genes encoding enzymes
that function in the initial steps of biosynthetic pathways. Thus,
a mutation in a protein-coding gene that reduces the demand for
a particular amino acid should reduce flux through its biosyn-
thetic pathway and alter the metabolic budget. Here, we inves-
tigate whether such energetic considerations are subject to
natural selection.

The identification of negative associations between expression
levels and usage of energetically costly amino acids depends
critically on the relationship between synonymous codon usage
bias and the translation rates of genes. tRNA abundances have
been quantified in E. coli (42) and B. subtilis (31), and in both
species, codon usage is biased toward ‘‘major’’ codon(s) that are
generally recognized by abundant tRNAs. Such patterns are
consistent with major codon preference, or natural selection
discriminating among synonymous codons to enhance transla-
tional elongation rates and�or to reduce the frequency of amino
acid misincorporations during protein synthesis (42–44).
Among-gene variation in synonymous codon usage bias is cor-
related with two-dimensional gel quantifications of protein
abundance in both E. coli (35, 36, 45) and B. subtilis (45) and
supports that the fitness benefit to encoding a major codon is a
function of its translation rate.

Our analyses show strong statistical support for increasing
usage of less energetically costly amino acids in abundant
proteins in both B. subtilis and E. coli. These patterns do not
appear to result from relationships between functional and
expression classes of proteins, mutational biases, or biases in
estimates of translation rates. In highly expressed genes, the

Fig. 4. Changes in amino acid composition with codon bias in B. subtilis and
E. coli. Amino acids that show a statistically significant change in abundance
with major codon usage are shown for B. subtilis (Upper) and E. coli (Lower).
The amino acids are arranged in order of decreasing metabolic cost. Only
amino acids that showed a statistically significant change in both the full gene
data set and across functional categories (Table 4) were classified as increasing
or decreasing. See Table 1 for one-letter amino acid symbols.

Table 4. Amino acid composition and MCU

Amino
acid Cost, �P

B. subtilis E. coli

All gene rS Funct. cat. Z All gene rS Funct. cat. Z

Ala 11.7 0.082* 4.86* 0.085* �0.03
Cys 24.7 �0.121* �4.01* �0.155* �8.55*
Asp 12.7 0.146* 6.69* 0.216* 11.21*
Glu 15.3 0.252* 9.88* 0.193* 12.33*
Phe 52.0 �0.311* �14.22* �0.100* �2.74*
Gly 11.7 0.067* 3.65* 0.235* 8.06*
His 38.3 �0.132* �8.65* �0.130* �8.38*
Ile 32.3 �0.154* �3.27* �0.039 0.00
Lys 30.3 0.281* 15.03* 0.224* 16.32*
Leu 27.3 �0.304* �12.97* �0.283* �19.98*
Met 34.3 �0.120* �4.15* 0.082* 2.05
Asn 14.7 0.189* 6.60* 0.027 4.13*
Pro 20.3 �0.036 �2.89* �0.061* �2.05
Gln 16.3 0.016 0.08 �0.137* �9.84*
Arg 27.3 �0.108* �8.54* �0.041* �2.14
Ser 11.7 �0.099* 0.01 �0.223* �8.92*
Thr 18.7 0.135* 5.24* 0.003 2.22
Val 23.3 0.095* 5.02* 0.219* 7.63*
Trp 74.3 �0.177* �4.96* �0.206* �7.93*
Tyr 50.0 �0.150* �6.69* �0.023 2.74*

rS values are shown for Spearman rank correlations between amino acid
frequency and MCU among 3,055 B. subtilis and 3,397 E. coli protein-coding
genes. Z statistics are shown for Mantel–Haenszel tests (33) applied to 2 � 2
contingency tables from 26 and 19 functional categories for B. subtilis and E.
coli, respectively. *, P � 0.05, sequential Bonferroni test, two-tailed.
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average cost of amino acid biosynthesis is reduced by �2.5 and
2.0 �P per amino acid per protein synthesized in B. subtilis and
E. coli, respectively. Although selection to enhance metabolic
efficiency is likely to be weak at a given codon, the energetic
savings for biosynthesis of the proteome may be in the hundreds
of millions of �P per generation (a precise estimate will require
knowledge of the whole-genome distribution of rates of protein
synthesis).

We have attempted to isolate the contribution of selection for
energetic efficiency from other sources of global constraints on
protein primary structure. However, energetic constraints are
likely to act in combination with other factors, such as nutritional
limitation and translational selection, in determining the fitness
effects of amino acid changes. Lobry and Gautier (10) noted that
the amino acid composition of highly expressed E. coli proteins
corresponds to the abundances of their respective tRNAs and
suggested that translational selection could influence both syn-
onymous codon usage and amino acid composition. The results
presented here suggest that biosynthetic costs could underlie
some of the differences in the representation of different amino
acids in the tRNA pool. Thus, selection favoring efficient and
accurate translation of proteins may act to reinforce selection to
reduce the energetic costs of amino acid biosynthesis.

Natural selection for energetic efficiency appears to constrain
the primary structures of B. subtilis and E. coli proteins. Amino
acid mutations that may be neutral with respect to protein
function may have subtle, but evolutionarily important, fitness
consequences through their effect on translation and metabo-
lism. In addition, because adaptive changes in protein sequence
must outweigh any increases in metabolic cost, amino acid
sequences may not be optimized for protein function, especially
in highly expressed proteins.

Examination of relationships between amino acid usage and
gene expression may provide a broadly applicable strategy to
identify energetic constraints on protein structure. Our analysis
depends on positive relationships between synonymous codon
usage bias and the translation rates of proteins and is thus
restricted to organisms undergoing major codon preference.
Recently developed methods that quantify abundances for thou-
sands of different proteins (46) will allow tests of energetic
selection in the proteomes of a larger number of species. Gene
expression can be highly condition dependent, however, and
such estimates will need to be obtained for a number of different
environments.

Our method also relies on accurate calculations of energetic
costs of amino acid biosynthesis. Because bacteria can use
alternative metabolic pathways depending on nutrient availabil-
ity and environmental conditions, these biosynthetic costs are
not fixed. In addition, other factors, such as the biosynthetic
complexity of pathways, nutritional limitation, and translational
selection, may prove to be important determinants of the amino
acid composition of proteins. Comparisons of relationships
between amino acid composition and gene expression among the
genomes of organisms that differ in both ecology (i.e., nutrient
and energy limitation) and metabolic pathways, such as pho-
totrophic and chemolithotrophic prokaryotes, may help to test
the generality of metabolic constraints in proteome evolution.
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