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ABSTRACT The “nearly neutral” theory of molecular evolution proposes that many features of genomes arise from the interaction of
three weak evolutionary forces: mutation, genetic drift, and natural selection acting at its limit of efficacy. Such forces generally have
little impact on allele frequencies within populations from generation to generation but can have substantial effects on long-term
evolution. The evolutionary dynamics of weakly selected mutations are highly sensitive to population size, and near neutrality was
initially proposed as an adjustment to the neutral theory to account for general patterns in available protein and DNA variation data.
Here, we review the motivation for the nearly neutral theory, discuss the structure of the model and its predictions, and evaluate
current empirical support for interactions among weak evolutionary forces in protein evolution. Near neutrality may be a prevalent
mode of evolution across a range of functional categories of mutations and taxa. However, multiple evolutionary mechanisms (in-
cluding adaptive evolution, linked selection, changes in fitness-effect distributions, and weak selection) can often explain the same
patterns of genome variation. Strong parameter sensitivity remains a limitation of the nearly neutral model, and we discuss concave
fitness functions as a plausible underlying basis for weak selection.

UNDER the neutral model, newly arising mutations fall
into two major fitness classes: strongly deleterious and

selectively neutral (Kimura 1968; King and Jukes 1969).
The first class is well supported by mutation accumulation
experiments (reviewed in Simmons and Crow 1977; Halligan
and Keightley 2009) and early DNA sequence comparisons
(Grunstein et al. 1976; Kafatos et al. 1977) and is shared
among competing evolutionary models. The novel and con-
troversial aspect of the neutral theory was the proposition
that, among mutations that go to fixation, the vast majority
are selectively neutral. Advantageous substitutions, al-
though important in phenotypic evolution, are sufficiently
rare at the molecular level that they need not be considered
to adequately model the process. Under the neutral theory,
within- and between-species variation sample two aspects
of a process of origination by mutation and changes in
gene frequency dominated by drift and, for some mutations,
negative selection (Kimura and Ohta 1971a). In contrast,

polymorphism and divergence may be “uncoupled” under
selection models (Gillespie 1987).

Protein polymorphism and the neutral model:
invariance of heterozygosity

Clear predictions for levels of polymorphism within popula-
tions and divergence among species are appealing aspects of
the neutral model. However, within a few years of its
proposal, the notion of drift-dominated evolution was
challenged by overall patterns of allozyme polymorphism
and contrasts between DNA and protein divergence.

Although evolutionary geneticists were generally sur-
prised by the extent of naturally occurring variation revealed
by allozyme gel electrophoresis in the 1970s (Lewontin
1991), the lack of species with high polymorphism levels
became a central problem for proponents of the neutral
theory (Robertson 1968; Maynard Smith 1970a; Lewontin
1974). The neutral model makes a simple prediction for
protein heterozygosity, a summary statistic for levels of nat-
urally occurring variation. Heterozygosity, H, is defined as
the probability of randomly sampling different alleles from
a population in two independent trials. Kimura and Crow
(1964) determined expected heterozygosity for neutral
alleles in an “idealized” population of constant size with
random mating among hermaphroditic individuals. Genera-
tions are nonoverlapping in this scenario, and offspring are
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generated by randomly sampling gametes from the parents.
Under such conditions, referred to as a Wright–Fisher pop-
ulation, and in the absence of mutation, genetic drift leads
to a loss of heterozygosity at a rate inversely related to the
population size. If new mutations arise in each generation,
heterozygosity will reach an equilibrium between muta-
tional input and loss by drift:

H ¼ 4Nv=ð1þ 4NvÞ;

where v is the per-generation mutation rate to new, neutral
alleles, and N is the number of diploid individuals in the
population. If all amino acid changes are either strongly del-
eterious or selectively neutral, v can be replaced with the
product of the fraction of neutral mutations (fn) and the
total mutation rate (u). To employ results for Wright–Fisher
populations to predict heterozygosity (and other aspects of
genetic drift) in populations that violate assumptions of the
model, N is replaced by the “effective” population size (Ne)
(see Charlesworth 2009). Incorporating both substitutions
gives an expected heterozygosity of H= 4Ne fnu/(1 + 4Ne fnu).

Heterozygosity under the neutral model can be predicted
given values for mutation rate and effective population size.
Estimates for both parameters are crude, but Maynard Smith
(1970b) and Nei and Graur (1984) predicted that levels of
protein heterozygosity in large natural populations should
approach the upper limit of 1. Although some species show
close to zero allozyme variation, very few studies found H .
0.30. Species such as humans, Drosophila melanogaster, and
Escherichia coli show roughly similar levels of protein poly-
morphism although their historical population sizes presum-
ably differ greatly. This “invariance of heterozygosity”
(Lewontin 1974) was argued as strong evidence against
the neutral model.

Protein divergence and the neutral model

The neutral model also makes simple predictions for
evolutionary divergence. For proteins, new mutations fall
into two main fitness classes: strongly deleterious mutations
that natural selection quickly eliminates from populations
and neutral mutations that drift to fixation with probabilities
equal to their initial frequency. Neutral mutations have
smaller fixation probabilities in larger populations than in
smaller populations, but this difference is exactly matched
by the higher mutational input in larger populations, and
the expected rate of neutral divergence is simply the
mutation rate (and is independent of population size)
(Wright 1938).

The initial motivation for Kimura’s proposal of the neutral
theory was absolute rates of protein evolution that appeared
to violate theoretical upper limits for adaptive fixations
(Kimura 1968), but the molecular clock was quickly adopted
as one of the strongest pieces of evidence supporting neutral
evolution (Kimura and Ohta 1971a). The clock-like nature
of protein evolution (Zuckerkandl and Pauling 1965) was
considered to be in accord with the neutral theory’s predic-

tion of lack of dependence on population size and inconsis-
tent with adaptive models that predict rate dependence on
both population sizes and the particular ecology of species.
To account for the molecular clock, Kimura and Ohta
(1971a,b) proposed that mutation rates are approximately
constant per year. In addition, they suggested that the frac-
tion of neutral mutations varies among proteins (this
explains the among-protein rate variation) but remains rel-
atively constant over time (this explains the clock-like di-
vergence for each protein) (Kimura and Ohta 1971b).
Kimura’s views on the importance of weakly selected muta-
tions fluctuated over his career (Kimura and Takahata
1995); we will refer to the initial formulation discussed
above as the “neutral model.”

Contrasting patterns of protein and DNA divergence
forced a reconsideration of the fit of protein molecular
clocks to the strict neutral model (Ohta 1972a). DNA diver-
gence, accessed through DNA–DNA hybridization (Laird and
McCarthy 1968; Kohne 1970), appeared to show a genera-
tion time effect (greater divergence in lineages experiencing
larger numbers of generations per year) in contrast to the
absolute-time dependence of protein evolution. The ratio of
DNA to protein divergence varied considerably (.10-fold)
among lineages. Under the neutral model, this ratio gives an
estimate of 1/fn for proteins (assuming fn = 1 for DNA di-
vergence), and such variation violated a tenet of the neutral
model (Kimura and Ohta 1971a).

Ohta proposed that “nearly neutral” mutations could ex-
plain both the upper limit of protein heterozygosity and
excess variation in protein divergence scaled to DNA diver-
gence. The efficacy of selection depends on the product of
selection coefficient and effective population size (Nes), re-
ferred to as “selection intensity” or “scaled selective effect.”
The model assumes a large fraction of newly arising muta-
tions with “borderline” fitness effects between clearly dele-
terious (Nes ,, 21) and selectively neutral (|Nes| ,, 1).
Amino acid changes with subtle effects on protein folding
could fall into this category (Barnard et al. 1972; Ohta
1973). For mutations in the nearly neutral range, the bal-
ance between the influence of genetic drift and natural se-
lection is strongly dependent on effective population size.
Figure 1 shows expected levels of within- and between-
species variation for mutations with small fitness effects.
Positive and negative selection increase and decrease ex-
pected levels of polymorphism and divergence, respectively,
but the impact of selection is greater on divergence than on
polymorphism. Interestingly, the rate of increase in polymor-
phism declines with the magnitude of positive selection.
Although more strongly selected advantageous alleles have
a reduced probability of loss by drift, they also show a
shorter transit time within populations (and thus have
a smaller probability of being sampled). Slightly deleterious
mutations, Nes � 21, have non-negligible probabilities of
being sampled within populations and going to fixation rel-
ative to neutral mutations, but fixation probabilities drop to
essentially zero for Nes , 23. Ohta defined nearly neutral
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mutations as those “whose selection coefficients are so small
that their behavior is not very different from strictly neutral
mutants. Operationally, this is defined by |Nes| , 1 (Ohta
1972b). The relative strengths of selection and genetic drift
shift gradually near |Nes| � 1, so “near neutrality” cannot
be precisely defined (especially for s. 0). In this section, we
employ Ohta’s definition of effectively neutral mutations in
the range |Nes|, 1 and consider only deleterious mutations.

Under weak selection, expected heterozygosity becomes
H � 4Ne f9nu/(1 + 4Ne f9nu), where fn from the neutral
model is substituted by the fraction of nearly neutral muta-
tions (f9n). fn is assumed (under the original neutral model)
to be generally constant among lineages but f9n is very sensi-
tive to effective population size. For nearly neutral mutations,
f9n decreases as Ne increases; thus, heterozygosity increases
more slowly as a function of population size than for neutral
alleles (Ohta 1974; Ohta and Kimura 1975). Excess rare
(low frequency) variants observed for allozyme data in a
number of species (Latter 1975; Ohta 1975; Chakraborty
et al. 1980) are consistent with slightly deleterious protein
polymorphism.

Neutral and adaptive scenarios were also proposed to
account for the invariance of allozyme heterozygosity. The
expected relationship between H and Ne assumes that pop-
ulations have reached a steady-state level of polymorphism.
Nei and Graur (1984) developed a demographic hypothesis
to explain the upper limit on heterozygosity; population
sizes may fluctuate considerably on evolutionary timescales,
and effective population size is especially sensitive to strong
reductions. Consistently low heterozygosities result from
bottlenecks during glaciation events; current population
samples for many species reflect the recovery of neutral
variation in expanding populations since the last glaciation.
The approach to equilibrium heterozygosity can require 4–
8N generations after population size changes (Nei and Graur
1984; Tajima 1989), and frequency spectra will be skewed
toward rare polymorphisms during the recovery phase. May-
nard Smith and Haigh (1974) showed that adaptive fixa-
tions can cause bottleneck-like reductions in variation and
excess rare variants at neutral sites that are genetically
linked to advantageous mutations, a process termed “ge-
netic hitchhiking.” Deleterious mutations also reduce levels
of neutral variation at linked sites (Charlesworth et al.
1995). Population bottlenecks and linked selection may con-
tribute to the upper limit of heterozygosity for neutral var-
iation, but weak selection in protein evolution also predicts
differences in ratios of protein to synonymous polymorphism
among populations (see below).

Nearly neutral mutations were also invoked to explain
variation in rates of protein evolution. As noted above, DNA
divergence appeared to be reduced in lineages with long
generation times whereas protein evolution showed a more
clock-like dependence on absolute time. Ohta and Kimura
(1971) and Ohta (1972a) postulated an inverse relationship
between generation time and effective population size to
explain this discordance [e.g., among mammals, humans

and elephants have longer generation times and presumably
smaller population sizes than rodents (see Chao and Carr
1993)]. If mutation rates are expressed in units of genera-
tions, then the rate of protein divergence (nonsynonymous
substitutions per site) in absolute time is f9n ug, where u is
the mutation rate per generation and g is the number of
generations per year. An inverse relationship between f9n
and g can produce clock-like protein evolution if f9n g is
roughly constant. Because lineages that undergo fewer gen-
erations per year also experience less effective negative se-
lection against slightly deleterious mutations, the ratio of
protein to DNA divergence is positively correlated with gen-
eration time.

Structure of the Nearly Neutral Model

The nearly neutral model posits a distribution of selection
coefficients with a large fraction of new mutations with
fitness effects near the reciprocal of population sizes found
in nature. This section will give an illustration of the model
and its predictions. Figure 2A shows an example of the
probability distribution of selective effects (DSE) of new
mutations that puts a substantial density in the nearly neu-
tral range for a wide range of population sizes, 102 , Ne ,
108. Initially, we considered only deleterious mutations. It is
important to note that “weakly selected” refers to the mag-
nitude of Nes rather than to the functional or fitness effects
of mutations. This distinction is critical because empirical
studies define “strong” and “weak” effects relative either

Figure 1 Polymorphism and divergence under weak selection. Expected
levels of nucleotide diversity and DNA divergence (each relative to neutral
mutations) are shown. The dotted line represents nucleotide diversity
(probability of observing a polymorphism at a given nucleotide site in
a pair of randomly chosen chromosomes) and is calculated using sam-
pling formulas from Sawyer and Hartl (1992), assuming an infinite-sites
mutation model and constant Ne. The solid line shows the fixation prob-
abilities of mutations (Kimura 1962). The plots assume directional (genic)
selection with fitness values 1, 1 + 1/2s, and 1 + s for the homozygote for
the ancestral allele, heterozygote, and homozygote for a new mutation,
respectively. The plots assume independent evolution among sites and
are based on Kimura (1983, p. 44).
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to an absolute scale or to the sensitivity of the assays used. The
limit of detection for laboratory studies, even in large-scale
fitness assays for microbes, is usually s. 0.001 (e.g., Dykhuizen
and Hartl 1983; Lind et al. 2010; Hietpas et al. 2011). “Weakly
selected” alleles in such studies would be well outside the
nearly neutral range in many natural populations; mutations
of |Nes| � 1 in populations with effective sizes Ne . 104 may
be undetectable in fitness and phenotype assays.

Figure 2B shows the cumulative distribution function for
the DSE shown in Figure 2A. Expected levels of polymor-
phism and divergence are functions of scaled selective
effects, Nes (Figure 1), and Figure 2C shows the cumulative
distribution functions for Nes across a range of population
sizes. Many mutations that fall into the “effectively neutral”
range in small populations are strongly selected in larger
populations, and f9n varies considerably as a function of
Ne. Expected polymorphism and divergence patterns under
this DSE are shown in Figure 2D. Polymorphism is less re-
duced under weak selection than divergence but both de-
crease at substantial rates over a wide range of Ne.

In the analyses above, we have assumed no new mutations
that enhance fitness, s . 0. Adaptive evolution may often
occur in response to environmental change. Because slightly
deleterious fixations go to fixation at appreciable rates, nearly
neutral models must allow for slightly advantageous muta-
tions, including back mutations and compensatory mutations
(Ohta 1972b, 1973; Latter 1975; Ohta and Tachida 1990),
even in the absence of pressure for novel function. Compen-
satory evolution retards the slow decline in fitness by slightly

deleterious fixations and will be more effective if some com-
pensatory mutations have large positive fitness effects (i.e., if
they can compensate for multiple deleterious fixations).

Figure 3A shows an example DSE for advantageous muta-
tions. Even a small fraction of such mutations can have a sub-
stantial impact on divergence (we assume that 99% of new
mutations are drawn from the deleterious DSE shown in Figure
2A and that 1% of mutations are drawn from the DSE shown
in Figure 3A). Expected polymorphism and divergence under
the combined deleterious and adaptive DSE are shown in Fig-
ure 3D. Advantageous mutations contribute little to polymor-
phism, and DNA diversity shows a negative relationship with
Ne similar to the deleterious mutations case. However, larger
populations have smaller proportions of deleterious, and larger
proportions of adaptive, fixations. The fixation rate of new
mutations begins to increase as a function of population size
when the proportion of effectively selected positive mutations
(Nes . 1) becomes large. The effect of population size on
expected polymorphism and divergence can be highly sensitive
to the particular DSE; we present a single example to illustrate
relationships among DSEs, population size, and evolutionary
patterns under the nearly neutral model.

Evidence for Weak Selection in Protein Evolution

Both DNA variation data and statistical methods for testing
evolutionary mechanisms have proliferated tremendously in
the past decade, and we summarize key findings related to
the nearly neutral model below.

Figure 2 Example evolutionary patterns under
slightly deleterious mutations. (A) A probability
density function for negative selection coeffi-
cients (gamma distribution with shape parame-
ter 0.2 and scale parameter 0.05). The area
under the curve gives the proportion of muta-
tions in a given fitness range. This distribution
of s was chosen to allow substantial increases in
the effectively neutral proportion for population
sizes in the range 102–108 and is assumed in
plots in B, C, and D. Under this distribution of
selective effects (DSEs), ,25% of newly arising
mutations have s , 20.01 and ,2% of muta-
tions have s,20.1. (B) Cumulative distribution
function for selective effects of new mutations.
y-axis values are the total areas under the curve
in A for x , s , 0. f9n, the proportion of “ef-
fectively neutral” mutations,21 , Nes # 0, for
a given population size is the y-axis value at x =
1/Ne (values are marked for Ne of 102, 104, 106,
108). (C) Cumulative distribution function for
Nes. y-axis values are the areas under the DSE
curve for x , Nes , 0 in A. Curves are shown
for Ne of 102, 104, 106, and 108 (thicker lines
represent larger population sizes). f9n values are
indicated (as solid circles) for each population
size. (D) Polymorphism and divergence as

a function of Ne. Expected DNA diversity (pN/pS, dotted line) and divergence (dN/dS, solid line) are shown. The dashed line shows f9n, and values for
Ne of 102, 104, 106, and 108 are marked. Expected divergence is smaller than f9n because selection reduces fixation rates for slightly deleterious
mutations within this range. pN/pS values are higher than f9n because mutations in the range Nes , 21 contribute to polymorphism (Figure 1). These
plots assume independent evolution among sites.

18 H. Akashi, N. Osada, and T. Ohta



Population size and rates of evolution

Negative relationships between rates of protein evolution and
population size are a clear prediction of near neutrality; Ohta
(1972a) showed such correlations in Drosophila and mam-
mals. Although generation time may be a noisy predictor of
Ne and DNA–DNA hybridization gives only rough measures of
distance, Ohta’s study is notable for introducing an early form
of comparison of nonsynonymous and putatively neutral di-
vergence to test evolutionary models. More recent analyses
often employ the ratio of nonsynonymous to synonymous
DNA divergence per site (dN/dS) to estimate fn or f9n under
the neutral and nearly neutral models, respectively.

Several genome-scale comparisons support the weak-
selection prediction of inverse relationships between dN/dS
and population size. Faster protein evolution in primates com-
pared to rodents was observed in early studies limited to small
numbers of genes (Li et al. 1987; Ohta 1995), and the pattern
has been confirmed in larger-scale analyses (Chimpanzee Se-
quencing and Analysis Consortium 2005; Rhesus Macaque Ge-
nome Sequencing and Analysis Consortium et al. 2007). In
addition, substitutions among amino acids with greater physi-
cochemical differences have been more frequent in primates
than in rodents (Zhang 2000; Eyre-Walker et al. 2002; Hughes
and Friedman 2009). Analyses of nuclear genes in a broader
range of mammals revealed a twofold variation in dN/dS and
negative relationships between dN/dS and estimates of popula-
tion size (Lindblad-Toh et al. 2005; Kosiol et al. 2008; Ellegren
2009). Wright and Andolfatto (2008) noted that such a rela-
tionship extends to comparisons among pairs of bacteria, Dro-
sophila, plants, and mammals. The relationship is strong, but
DSEs may not be conserved across distantly related organisms.

Independent comparisons between host-dependent bacte-
rial lineages and their free-living relatives show consistently
faster evolution in endosymbionts (Moran 1996; Wernegreen
and Moran 1999) as well as pathogens (Andersson and
Andersson 1999; Warnecke and Rocha 2011). Wernegreen
(2011) also noted a higher ratio of radical-to-conservative
amino acid replacement changes in insect symbionts relative
to free-living relatives. Vertically transmitted symbionts, such
as Buchnera in aphids, experience population bottlenecks dur-
ing transmission from parent to embryo as well as population-
size fluctuations of the host species. In addition, symbiont
genomes experience limited opportunities for recombination;
genetic linkage among selected mutations reduces the effi-
cacy of natural selection in a manner similar to reduced Ne

(Hill and Robertson 1966; Felsenstein 1974; Birky and Walsh
1988; Charlesworth 1994; Barton 1995). Low heterozygosity
at synonymous positions is consistent with small population
sizes of bacterial endosymbionts (Funk et al. 2001; Abbot and
Moran 2002; Herbeck et al. 2003).

Because reduced Ne is associated with the ecology of host
dependence, shifts in DSEs should also be considered as
a cause of elevated protein divergence. In particular, “re-
laxed selection,” an increased density of mutations with very
small effects, is plausible in an intracellular environment
that may be more stable than environments of free-living
microbes (especially for insect and animal hosts) and from
which many metabolites can be obtained directly (Moran
1996). In this scenario, an increase in the density of muta-
tions with fitness effects in the range 21 , Nes , 0 reflects
an elevated proportion of amino acid changes with smaller
selection coefficients rather than (or in addition to) a

Figure 3 Example evolutionary patterns for slightly
deleterious and advantageous mutations. (A) Prob-
ability density function for positive selection coeffi-
cients (gamma distribution with shape parameter 1
and scale parameter 5 · 1027). (B) Cumulative
distribution function for selective effects of new
mutations. y-Axis values are the total areas under
the curve for 0 , s , x in A. f9n for a given pop-
ulation size is the y-axis value at x = 1/Ne (values are
marked for Ne of 104, 106, 108). Almost all bene-
ficial mutations are effectively neutral in Ne of 102

and 104, and almost none are effectively neutral in
Ne of 108. (C) Cumulative distribution function for
Nes or scaled selective effects. y-Axis values are the
areas under the DSE curve for 0 , Nes , x in A.
Curves are shown for Ne values of 102, 104, 106,
and 108 (thicker lines represent larger population
sizes). f9n values are shown as solid circles for each
population size. (D) Polymorphism and divergence
as a function of Ne for a distribution of fitness
effects that combines the density functions in Figure
2A (99% of new mutations) and Figure 3A (1% of
new mutations). The dashed line shows the pro-
portion of advantageous fixations. Expected DNA
diversity (pN/pS, dotted line) and divergence (dN/dS,
solid line) are shown. These predictions assume in-
dependent evolution among sites.
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reduced Ne. Interestingly, several fast-evolving endosymbi-
ont lineages show high expression of heat-shock proteins
(McCutcheon and Moran 2011). GroEL, an ATP-dependent
bacterial chaperonin that assists in protein folding, is among
the most abundant proteins in independently derived endo-
symbionts. Elevated heat-shock protein expression may be
part of a compensatory response to slightly deleterious fix-
ations that destabilize proteins (Moran 1996; van Ham et al.
2003; Fares et al. 2004) and could be an example of a rela-
tively small number of adaptive changes counteracting
a much larger number of deleterious fixations. GroEL over-
expression can enhance growth rates of laboratory strains of
bacteria that have accumulated mutations but show a cost in
the ancestral strains (Moran 1996; Fares et al. 2002). In-
terestingly, this cost is apparent only when ancestral strains
are grown in amino-acid-limited environments. Elevated
heat-shock protein expression may be favored in endosym-
biont lineages that have accumulated destabilizing muta-
tions. Enhanced protein folding should reduce the fitness
effects of further destabilizing amino acid changes (i.e., shift
the distribution of selection coefficients) (Tokuriki and Taw-
fik 2009a). Thus, elevated heat-shock protein expression
and accumulation of destabilizing mutations may form a pos-
itive feedback loop until the benefits of further chaparonin
overexpression no longer outweigh the costs.

A number of cases of accelerated divergence in small
populations have been documented for proteins encoded in
mitochondrial genomes. Island bird species show elevated
rates of protein evolution relative to their mainland counter-
parts (Johnson and Seger 2001), and similar patterns hold
for other vertebrates as well as invertebrates (Woolfit and
Bromham 2005). Higher dN/dS in obligately asexual line-
ages than in sexual lineages of Daphnia (Paland and Lynch
2006) and freshwater snails (Johnson and Howard 2007;
Neiman et al. 2010) is consistent with elevated Hill–Robert-
son interference with reduced opportunities for recombina-
tion [between mitochondrial DNA (mtDNA) and nuclear
genomes] and/or greater frequencies of founder events in
asexual lineages (Glémin and Galtier 2012). However, asex-
ual lineages are often short-lived, tip branches on the phy-
logeny, and dN/dS for these lineages may include a greater
fraction of polymorphic mutations than in sexual lineages.
Both dN/dS and ratios of radical-to-conservative amino acid
fixations are positively correlated to body mass for mtDNA-
encoded proteins (13 genes) among .100 species of
mammals (Popadin et al. 2007). If body mass and Ne are
inversely related (Damuth 1981), these patterns support
slightly deleterious fixations in large mammals. In many of
the examples above, lineages that are thought to differ in Ne

also differ in their ecology; differences in DSEs remain
a plausible alternative, or a contributing factor, to heteroge-
neity in protein divergence. In addition, Bazin et al. (2006)
found little evidence for positive correlations between
mtDNA heterozygosity and proxies for effective population
size (allozyme and nuclear DNA variation) across a wide
range of taxa. They suggested that complete genetic linkage

in mtDNA genomes and recurrent positive selection (Gillespie
2001) may underlie such patterns. However, within-taxa
comparisons show positive correlations between mtDNA
heterozygosity and nuclear genome variation in mammals
(Mulligan et al. 2006; Nabholz et al. 2008) and other ani-
mals (Piganeau and Eyre-Walker 2009). Variation in muta-
tion rates, adaptive evolution, and=or biased transmission
may contribute to within- and between-taxa differences for
mtDNA polymorphism.

Within-genome comparisons can also test for relation-
ships between Ne and protein evolution. Near neutrality
predicts faster protein evolution in regions of reduced re-
combination, and such patterns have been confirmed in
yeast (Connallon and Knowles 2007; Weber and Hurst
2009) and Drosophila (Campos et al. 2012; Mackay et al.
2012). Because these studies compare evolutionary rates
among different genes, differences in DSEs may contribute
to heterogeneity. Such differences may be related to the
functional categories of genes that reside in regions of low
recombination and/or to their expression level. Interest-
ingly, in Drosophila, subsets of loci such as male-biased
genes (Betancourt and Presgraves 2002; Presgraves 2005;
Zhang and Parsch 2005) and D. melanogaster lineage accel-
erated genes (Larracuente et al. 2008) show the opposite
trend: positive correlations between recombination and dN/
dS consistent with limits to adaptive evolution under low
recombination. Primates show no correlation between dN/
dS and the rate of recombination (Bullaughey et al. 2008),
but relationships between local recombination rates and
DNA diversity in the human genome are weak (Hellmann
et al. 2005).

Interpretations of among-lineage and within-genome dN/
dS tests of near neutrality are complicated by recent evi-
dence that a majority of protein changes are adaptively fixed
in many species (reviewed in Fay 2011). Advantageous
mutations go to fixation at higher rates in larger Ne when
they are weakly selected and when adaptive evolution is
mutation-limited. In such cases, dN/dS can show positive
relationships with Ne (Figure 3D) even in the presence of
slightly deleterious mutations.

Population size and protein polymorphism

Several assumptions are necessary when attributing varia-
tion in protein divergence to near neutrality. Advantageous
substitutions should be rare, and DSEs must remain constant
among the lineages compared. In addition, relative ancestral
effective population sizes must be known. Some studies
assume relationships between Ne and the ecology of organ-
isms (e.g., host-cell dependence, island habitats), and other
studies estimate Ne from current polymorphism levels. The
former approach leaves open the possibility of associations
between the “life style” of organisms and their DSEs. The
latter method allows inference of Ne in roughly the last 4N
generations. In most cases, molecular divergence measured
by dN/dS occurred at a much deeper time scale. Finally, in-
ferring f9n from dN/dS requires an assumption of neutral
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divergence at synonymous sites and accurate estimation
of dS. Both natural selection (reviewed in Akashi 2001;
Chamary et al. 2006; Hershberg and Petrov 2008; Plotkin
and Kudla 2010) and biased gene conversion (reviewed in
Birdsell 2002; Marais 2003; Duret and Galtier 2009) can
cause fixation biases in synonymous divergence. In addition,
estimates of dS can differ considerably among methods
when base composition is biased and/or when divergence
is large (Dunn et al. 2001; Bierne and Eyre-Walker 2003;
Aris-Brosou and Bielawski 2006).

Weak selection also predicts inverse relationships be-
tween polymorphism levels (scaled to neutral values) and
Ne (see Figures 2 and 3). The DNA analog of heterozygosity
in allozyme data is “nucleotide diversity,” the number of
differences (per nucleotide site) in a randomly selected pair
of chromosomes from a population (p). Under neutral pro-
tein evolution, equilibrium DNA diversity at nonsynonymous
sites is

pN ¼ 4 Nefn u;

where u is the total mutation rate (Kimura 1969; Watterson
1975; Tajima 1983). If all synonymous mutations are neu-
tral, pN/pS provides an estimate of fn, which, under the
neutral model, should be generally constant among species.
Under near neutrality, pN/pS gives an estimate of f9n, the
proportion of effectively neutral mutations that are strongly
dependent on Ne [note that f9n estimates from polymor-
phism include mutations with a larger range of selection
intensities than f9n estimated from divergence (see Figure
1)]. Fluctuations in population size and/or linked selection
may contribute to the invariance of allozyme heterozygosity,
but such factors do not affect expected pN/pS for neutral
protein polymorphism.

Tests of weak selection that compare polymorphism
among populations are robust to some of the assumptions
required in divergence tests. Estimates of population size
from present-day populations should be more accurate for
the relevant Ne. Since advantageous mutations make small
contributions to polymorphism (under directional selec-
tion), comparisons of pN/pS are less affected by adaptive
evolution than divergence (Figure 3). In addition, although
neutrality at synonymous sites (or other control classes such
as introns) may not be strictly valid, weak selection in the
control class will have less impact on polymorphism than
fixation. Finally, pN/pS comparisons can be performed
among closely related species (or even among populations
of the same species if they are evolving independently). The
critical assumption of DSE identity is more likely to hold
among closely related organisms than among more distantly
related species.

Elyashiv et al. (2010) found negative relationships be-
tween pN/pS and estimates of population size among
closely related yeast species. pS varies roughly 10-fold
among essentially independently evolving populations of
Saccharomyces cerevisiae and S. paradoxus, suggesting simi-

lar variation in Ne. Although data were available for only six
populations, pN/pS varies considerably among populations
(from 0.16 to 0.37) and shows a negative correlation with
pS. Piganeau and Eyre-Walker (2009) showed negative cor-
relations between pN/pS and pS for mtDNA genes across
more distantly related species within several taxa (they ex-
amined .1700 species including fish, birds, mammals,
insects, and mollusks).

pN/pS ratios for mammal and plant nuclear genes also
show negative associations with estimates of population
size. In comparisons limited to a small number of genes,
Satta (2001) found higher pN/pS in humans than in chimps;
this difference has been confirmed in genome-scale analyses
(Hvilsom et al. 2012). pN/pS is also higher in humans
(0.35) than in mice (0.19; Halligan et al. 2010) and rabbits
(0.05; Carneiro et al. 2012), which is consistent with sub-
stantial differences in f9n. Among a larger number of plant
species, pN/pS varies by roughly fourfold among species
and is inversely related to estimates of Ne (which ranges
from �3 · 104 to �7 · 105) (Gossmann et al. 2010; Slotte
et al. 2010; Strasburg et al. 2011).

Figure 4 shows protein polymorphism comparisons
among yeasts and plants. Both yeast and plants show neg-
ative relationships between pN/pS and pS as predicted under
weak selection. pN/pS is lower among Drosophila species
than among mammals (both overall and among homolo-
gous genes involved in the metabolic process) (Petit and
Barbadilla 2009), but patterns within Drosophila are un-
clear (the numbers of sampled populations is low; see sup-
porting information, Table S1). Polymorphism patterns for
individual species can be attributed to differences in DSEs
rather than population size [e.g., high pN/pS in humans
has been attributed to relaxed selection (Takahata 1993;
Satta 2001)]. Sampling species with a breadth of popula-
tion sizes in a larger number of taxa will be necessary to
establish Ne as a key factor determining the proportions of
weakly and strongly deleterious mutations and to test
whether near neutrality underlies the invariance of protein
heterozygosity.

Within-lineage contrasts of polymorphism
and divergence

The examples above employed mostly among-lineage con-
trasts in the evolutionary dynamics of protein and DNA
mutations to test mechanisms of molecular evolution.
Within-lineage comparisons offer an alternative approach to
test for natural selection acting at its limit of efficacy. We
first consider approaches restricted to polymorphism data.
As discussed above, frequency spectra for allozyme variation
are often skewed toward an excess of rare (low frequency)
variants in mammals and Drosophila (Latter 1975; Ohta
1975; Chakraborty et al. 1980). These studies compared
data for a single class of mutations to a theoretical expecta-
tion for neutral alleles at steady state (see also Watterson
1977); rejection of the null hypothesis is consistent with
either selection or departures from equilibrium. Bulmer
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(1971) took a different approach in directly comparing ob-
served frequency distributions among classes. At loci segre-
gating for more than two alleles, common allozyme variants
consistently showed intermediate electrophoretic mobility
whereas rare alleles tended to show extreme (both slow
and fast) mobility. The statistical approach compared pat-
terns for within-locus mutation classes and rejected equal
fitness effects among mobility classes (the neutral model
predicts no association between frequency and mobility) in
favor of natural selection. Because electrophoretic mobility
is primarily dependent on the overall charge of proteins,
Bulmer’s findings are consistent with stronger deleterious
effects of radical amino acid mutations relative to conserva-
tive changes.

Comparisons among functional categories of mutations
that are interspersed in DNA can resolve overlapping pre-
dictions for demographic and selection scenarios in tests
of the neutral model. Sawyer et al. (1987) proposed direct
comparisons between the site frequency spectra for non-
synonymous and synonymous DNA polymorphisms (inter-
specific data were not available). Their study showed an
excess of rare amino acid variants among naturally occurring
alleles of an E. coli gene. Sawyer et al. (1987) argued that in-
ference of natural selection from direct comparisons among
classes of mutations from the same gene is robust. Because
factors that affect variation in a given genetic region (e.g., de-
mographic history or genetic linkage to selected sites) have
similar impacts on synonymous and nonsynonymous muta-
tions, differences in their frequency spectra can be attributed
to differences in their fitness effects. A similar argument for
robustness applies to the Bulmer test discussed above.

McDonald and Kreitman (1991) included divergence
data in direct comparisons of mutation classes interspersed
in DNA. Their test divides variable sites into two classes
(polymorphic mutations are pooled into a single class and
compared to fixed differences). The test relies on the sensi-
tivity of the ratio of the numbers of polymorphic-to-fixed
differences (rpd) to even very weak selection (Figure 1).
Slightly deleterious amino acid polymorphisms elevate non-
synonymous rpd, whereas adaptive protein evolution has the
opposite effect.

We will refer to the general category of approaches that
compare frequency spectra and fixations between classes of
mutations interspersed in DNA as “population genetics of
interspersed mutations” (PGIM) tests. Numerous studies
have reported PGIM patterns consistent with slightly dele-
terious amino acid changes. Excess rare polymorphisms and
higher rpd for nonsynonymous compared to synonymous
variation appear to be general patterns in viral (Edwards
et al. 2006; Pybus et al. 2006; Hughes 2009) and bacterial
genomes (Hughes 2005; Charlesworth and Eyre-Walker
2006; Rocha et al. 2006; Hughes et al. 2008) as well as in
animal mtDNA (Ballard and Kreitman 1994; Nachman et al.
1996; Rand and Kann 1996; Hasegawa et al. 1998; Wise
et al. 1998; Weinreich and Rand 2000; Gerber et al. 2001;
Subramanian et al. 2009). Similar patterns have been noted
in nuclear genes from yeast (Doniger et al. 2008; Liti et al.
2009), Drosophila (Akashi 1996; Fay et al. 2002; Loewe
et al. 2006; Begun et al. 2007; Shapiro et al. 2007; Haddrill
et al. 2010; Andolfatto et al. 2011), humans (Cargill et al.
1999; Sunyaev et al. 2000; Hughes et al. 2003; Williamson
et al. 2005; Boyko et al. 2008; Keightley and Halligan 2011;
Subramanian 2012), mice (Halligan et al. 2010), and plants
(Bustamante et al. 2002; Nordborg et al. 2005; Foxe et al.
2008; Fujimoto et al. 2008; Gossmann et al. 2010; Slotte
et al. 2010; Branca et al. 2011; Strasburg et al. 2011). Excess
rare polymorphism could reflect very strongly deleterious
mutations if the number of sampled chromosomes is very
high, but sample sizes in most of these studies do not ap-
proach such levels. Interpretations of PGIM patterns often
assume random sampling from a panmictic population, but
some of the studies above are likely to include alleles from
structured populations; in such cases, local adaptation could
contribute to excess protein polymorphism. Balancing se-
lection, more generally, is consistent with high nonsynon-
ymous rpd and, under some conditions, with excess rare
variants (Gillespie 1994a). Genome scans have detected lit-
tle evidence for major contributions of long-term balancing
selection in humans (Andrés et al. 2009) and Drosophila
(Wright and Andolfatto 2008), but the genomic signal for
other forms of balancing selection may be more subtle
(Charlesworth 2006).

Figure 4 Levels of nonsynonymous and synon-
ymous DNA polymorphism among populations.
DNA diversity for nonsynonymous mutations
(scaled to DNA diversity for synonymous muta-
tions) is plotted against DNA diversity for syn-
onymous mutations (an estimate of population
size). pS is a proxy for population size if muta-
tion rates are similar among the species com-
pared. Note that statistical analyses of such
data must account for the contribution of pS

to both axes (Piganeau and Eyre-Walker 2009;
Elyashiv et al. 2010). Common symbols in each
plot indicate the same set of genes compared
among species. Data are shown for taxa for

which six or more independent populations have been sampled for $20 nuclear genes. See Table S1 for species names, sample numbers, number
of loci, and references (as well as data for a more limited number of Drosophila species).
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The null hypothesis of PGIM tests is identical distribu-
tions of selection intensities among classes of DNA muta-
tions. Additional information, such as an assumption of
neutral mutations for one of the classes, allows inference of
the sign of selection coefficients. The statistical power to
detect selection can be improved by including both fre-
quency spectra and divergence data [i.e., by combining
the Sawyer et al. (1987) and McDonald and Kreitman
(1991) approaches] and by inferring frequencies for newly
arisen polymorphisms (Akashi 1999a; Bustamante et al.
2001). Such information also allows inference of the relative
contributions of slightly deleterious, effectively neutral, and
advantageous substitutions to genome evolution (Charlesworth
1994; Akashi 1999b; Fay et al. 2001; Bustamante et al.
2002; Smith and Eyre-Walker 2002; Sawyer et al. 2003,
2007). Recent approaches jointly estimate demographic
parameters (e.g., population size changes) and distributions
of Nes (Williamson et al. 2005; Keightley and Eyre-Walker
2007; Boyko et al. 2008; Eyre-Walker and Keightley 2009;
Schneider et al. 2011; Wilson et al. 2011). Although the
number of taxa that have been examined remains lim-
ited, current findings are generally consistent with an Ne

effect on the efficacy of negative selection on nonsynony-
mous polymorphism (discussed above). The proportion of
adaptive protein fixations among lineages also shows some
indications of a positive association with population size
(Gossmann et al. 2012). Such associations are expected for
both weakly selected beneficial alleles and more strongly
selected alleles when rates of adaptive evolution are muta-
tion-limited. Among mammals, PGIM studies support �60%
adaptive protein fixations in mice and rabbits (Halligan
et al. 2010; Carneiro et al. 2012) compared to a point esti-
mate of 0% (and a rough maximum estimate of �40%) in
humans (Eyre-Walker and Keightley 2009). Adaptive pro-
portions range from 0 to 50% among sunflower species
and show positive relationships with estimates of Ne (Strasburg
et al. 2011). Several studies estimate .50% adaptive evo-
lution in three Drosophila species believed to have large
population sizes (Smith and Eyre-Walker 2002; Bierne and
Eyre-Walker 2004; Welch 2006; Maside and Charlesworth
2007; Haddrill et al. 2008; Schneider et al. 2011; Wilson
et al. 2011), but adaptive proportions are also high in a spe-
cies with a substantially lower estimate of Ne (Bachtrog
2008).

McDonald and Kreitman (1991) discussed a potential
caveat in PGIM inference of adaptive protein evolution.
Spurious evidence for positive selection can arise from a
combination of weakly deleterious mutations and changes
in population size (see also Ohta 1993; Eyre-Walker 2002;
Hughes 2008). Current approaches to estimate selection in-
tensity assume that Nes has remained constant over the pe-
riod that sampled polymorphisms and fixed differences have
arisen. However, consider a case where fixed differences ac-
cumulate in a small population that subsequently increases
so that the sampled polymorphisms come from the larger
population whereas a large proportion of the fixed differ-

ences occurred in the smaller, ancestral Ne. In our example
(Figure 2), a population size of 102 has a .2.5-fold higher
dN/dS than a population of 104. Under such a scenario, an
excess of slightly deleterious fixations will reduce nonsynon-
ymous rpd relative to the constant population size case.
This pattern would be interpreted as evidence for adaptive
evolution under assumptions of constant DSE and effective
population size. Current approaches to jointly estimate de-
mographic parameters and distributions of Nes do not at-
tempt to adjust for excess amino acid fixations in cases of
smaller ancestral populations.

Slightly deleterious fixations in ancestral populations
remain a viable alternative explanation for excess replace-
ment fixations in PGIM tests. McDonald and Kreitman
(1991) argued that such scenarios require extensive param-
eter tuning (particular combinations of DSE, population
sizes, and timing of population size change) and favored
the simpler explanation of adaptive evolution. Fay et al.
(2002) claimed that considerable among-gene variation in
nonsynonymous rpd favors adaptive evolution rather than
slightly deleterious fixations. This argument assumes similar
DSEs among genes, but the basis for this assumption is un-
clear. DSEs are likely to be determined by structural features
of proteins (e.g., ratio of solvent exposed to buried residues)
as well as their expression patterns, and both factors may
vary widely among genes. Eyre-Walker and Keightley
(2009) suggested that the scenario of deleterious fixations
in small ancestral populations is unlikely to explain low pro-
tein rpd across multiple lineages. This argument is valid if
high rates of adaptive protein evolution are consistently
found among species with independent population histories
but does not address evidence for high rates of adaptive
protein evolution in particular lineages or cases where sup-
port for adaptive evolution varies among species (e.g.,
plants). Incorporating a model of codon bias evolution
in tests of positive selection at other site classes may help
to distinguish between deleterious and adaptive fixations
(Akashi 1999a).

Compensatory Protein Evolution

Determining the contribution of alleles of small effect in
adaptive evolution is a challenge for polymorphism/diver-
gence analyses. The notion that adaptive evolution should
“advance by the shortest and slowest steps” (Darwin 1859)
remains a central assumption in many theories of adaptation
(reviewed in Orr 2005). Further developments in statistical
approaches may provide a means to infer DSEs among pos-
itively selected mutations, but disentangling the proportion
of adaptive fixations and the magnitude of their effects may
prove difficult (Boyko et al. 2008; Schneider et al. 2011).

Weakly beneficial mutations may include compensatory
changes that maintain fitness in the face of abundant slightly
deleterious fixations. The term “compensatory” has been used
in a number of contexts, and we will first attempt to clarify
some terminology. Kimura (1985) focused on scenarios of
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simultaneous substitutions of relatively strongly deleterious
and compensatory mutations. Because fitness remains con-
stant and genetic drift drives double-mutant substitution,
we refer to such cases as “compensatory neutral” (CN).
Weakly deleterious mutations can go to fixation at apprecia-
ble rates, and we refer to the restoration of fitness by sub-
sequent, positively selected mutations as “compensatory
weak selection” (CWS) (Osada and Akashi 2012). Note,
however, that such mutations can confer large fitness bene-
fits if they compensate for multiple deleterious fixations.
Finally, several studies of artificial protein evolution have
found that adaptive amino acid fixations are followed by
beneficial fixations that restore pleiotropic deleterious ef-
fects of the initial substitution (reviewed in Andersson and
Hughes 2010). The latter class often includes mutations that
elevate protein stability (Wang et al. 2002; Ortlund et al.
2007; Tokuriki et al. 2008). If the initial substitution is pos-
itively selected (s. 0 despite pleiotropic effects), we refer to
subsequent beneficial fixations as “compensatory modifiers”
(CM). The distinction among classes of compensatory evo-
lution is important because, under CWS, weak deleterious
fixations create a necessity for positive selection even in the
absence of environmental change.

Compensatory substitutions may be prevalent in genome
evolution. Co-evolution at nucleotide sites that correspond
to paired regions in RNA stem structures supports both CN
and CWS (Chen et al. 1999; Meer et al. 2010). PGIM com-
parisons between translationally preferred and unpreferred
synonymous codons are consistent with CWS in the mainte-
nance of Drosophila and yeast codon bias (Akashi 1995; Liti
et al. 2009), and similar contrasts between putative fitness
classes suggest CWS maintenance of nucleosome occupancy
patterns in yeast (Kenigsberg et al. 2010). Conserved expres-
sion patterns despite gain and loss of binding sites in regulatory
regions (Ludwig et al. 2000; reviewed inWeirauch and Hughes
2010) and turnover of splicing enhancers in mammals (Ke
et al. 2008) have been attributed to mutation-selection-
drift balance (CWS).

Laboratory studies support an abundance of epistatic
mutations that can restore loss of fitness in proteins (Burch
and Chao 1999; Moore et al. 2000; Poon 2005; Poon et al.
2005), but identifying compensatory evolution in nature has
proven challenging. Charlesworth and Eyre-Walker (2007)
tested for CWS by comparing rates of evolution (mostly
mtDNA-encoded proteins) among pairs of species that in-
habit mainlands and islands. They found higher rates of
protein evolution in mainland relative to island populations
in cases where the mainland populations are thought to be
derived from island populations. Such patterns are consis-
tent with compensatory evolution in larger (mainland) pop-
ulations following an accumulation of slightly deleterious
fixations in smaller (island) populations. However, such pat-
terns could also reflect population size effects on mutation-
limited adaptive evolution in novel habitats.

Co-evolutionary patterns can reveal compensatory pro-
tein evolution (Haag 2007). Mutations that are strongly del-

eterious in one species can be fixed in a different genetic
background (presumably containing compensatory muta-
tions) in other species. Patterns consistent with such a sce-
nario have been documented in mammals (Kondrashov et al.
2002) and insects (Kulathinal et al. 2004). Several early
studies identified within-protein correlations among amino
acid positions but did not account for phylogenetic relation-
ships (Korber et al. 1993; Neher 1994). More recent studies
have identified co-occurring substitutions within a phylogeny
(Pollock 1999; Fukami-Kobayashi et al. 2002; Dimmic et al.
2005; Dutheil et al. 2005; Yeang and Haussler 2007). Such
patterns support within-protein epistatic interactions but do
not distinguish among CN, CM, and CWS scenarios. Map-
ping the temporal order of substitutions (given dense sam-
pling of species) can identify sequentially occurring
substitutions consistent with CM or CWS (Bazykin et al.
2006; Kryazhimskiy et al. 2011; Osada and Akashi 2012),
but distinguishing between these scenarios may be limited
to particular biological contexts.

The difficulty of predicting fitness effects of amino acid
changes has been a major limitation to testing compensatory
evolution. The notion that protein evolution may, in large
part, reflect mutation-selection-drift balance among slightly
deleterious destabilizing and weakly beneficial, stabilizing
amino acid changes (Tokuriki and Tawfik 2009b; Goldstein
2011; Wylie and Shakhnovich 2011) may allow tests of
CWS if mutations falling into these fitness classes can be
predicted.

Concave Fitness Functions and the Paradox
of Near Neutrality

Most of this review has focused on patterns of protein and
DNA variation that test weak selection. However, one of the
strongest objections to the nearly neutral model has been
a theoretical one—its reliance on a particular distribution of
selective effects. We show an example of a DSE (Figure 2A)
that gives nearly neutral dynamics over a wide range of
population sizes (Figure 2D). However, such dynamics hold
only for a specific range of shape parameters; small changes
in the DSE can cause a lack of dependence of polymorphism
and divergence on population size and/or a complete lack of
evolution in large populations (Nei and Graur 1984; Gilles-
pie 1987; Takahata 1993). Thus, support for weak selection
among classes of mutations and across taxa is paradoxical.
Population sizes and ecological circumstances vary widely
among species, and relationships between DNA mutations
and fitness are determined by different factors for different
types of mutations. Why should DSEs in nature so often
show the precise characteristics required for nearly neutral
evolution?

Linked selection may constrain effective population sizes
in natural populations. Larger populations experience a
higher input of non-neutral mutations (reduced f9n and
elevated within-population mutation rate to advantageous
alleles). Depending on recombination rates and DSEs, levels
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of neutral polymorphism at sites linked to selected sites may
show little relationship with population size (Gillespie
2000). Although the number of species for which both direct
estimates of mutation rates and measures of DNA diversity
in natural populations are available is small, estimates of Ne

range over three orders of magnitude (Charlesworth 2009).
Linked selection is likely to constrain among-lineage varia-
tion in Ne (especially in regions of limited recombination)
but does not appear to be sufficient to account for the par-
adox of near neutrality.

General properties of phenotype–fitness relationships may
underlie weak selection. Wright (1929, 1934) proposed that
diminishing returns in fitness as phenotypes approach optima
explain the prevalence of genetic dominance among wild-type
alleles and recessive effects of newly arising mutations. His
model examined relationships between the catalytic activity
of an enzyme (a phenotypic value) and flux through a bio-
chemical pathway (directly related to fitness) and showed that
the fitness benefit for a given increase in activity is greater for
low-activity alleles than for alleles functioning close to an
optimum. Kacser and Burns (1981) confirmed hyperbolic rela-
tionships between activity and flux under enzyme kinetic
models and gave supporting evidence from biochemical stud-
ies. The Kacser–Burns model applies only to particular scenar-
ios of enzyme catalysis (Savageau 1992; Wilkie 1994; Omholt
et al. 2000), but concave fitness functions may hold more
generally. Classic studies by Crow and co-workers showed
an “inverse heterozygous-homozygous effect” for deleterious
mutations in Drosophila; deleterious mutations of large effect
tend to be recessive (large s, small h) whereas alleles of small
effect tend to show heterozygous effects (small s, large h)
(Greenberg and Crow 1960; Simmons and Crow 1977). Such
patterns are consistent with diminishing returns because fit-
ness vs. phenotype relationships are close to linear (additive)
within restricted ranges of phenotypic values but show strong
nonlinearity over wider ranges. Gene-deletion studies in yeast
support inverse relationships between fitness (growth rate)
and heterozygous effects across functional categories of genes
(Phadnis 2005; Agrawal and Whitlock 2011). Gene knockouts
were tested (missense mutations may not show the same
associations), but the findings are consistent with concave
fitness functions for a variety of traits (including noncatalytic
functions). Non-additive relationships between protein stabil-
ity and fitness (Bershtein et al. 2006; Tokuriki and Tawfik
2009b; Wylie and Shakhnovich 2011) could underlie dimin-
ishing returns epistasis.

Hartl et al. (1985) related concave fitness functions to
mechanisms of molecular evolution. Under diminishing
returns, DSEs change as character values approach optima.
Changes in activity will have smaller fitness effects (both
positive and negative) as enzymes approach optimum activ-
ity, and Hartl and co-workers predicted that characters in
natural populations should be on plateaus of concave fitness
functions. Gillespie (1994b) found that concave fitness func-
tions can lead to phenotypic values close to their optima and
to dynamics indistinguishable from neutral evolution when

phenotypes of new mutations are normally distributed
around parental values (i.e., equal proportions of positively
and negatively selected mutations). However, if mutations
often have small phenotypic effects and tend to be deleteri-
ous, then characters will evolve to equilibrium values below
their optima (Akashi 1996; Hartl and Taubes 1998). Smaller
populations will evolve to lower equilibrium values than
larger populations, and a wide range of population sizes
could show a balance among weak selection, drift, and mu-
tation; i.e., DSEs will evolve in different population sizes to
a point where many mutations show |Nes| � 1 (Figure 5).
Such a scenario has been proposed to account for patterns of
codon usage bias (Li 1987; Akashi 1995; Kondrashov et al.
2006). The correlation between evolutionary rate and pop-
ulation size can be weak under concave fitness relationships
but will depend on how DSEs change with phenotypic val-
ues (Cherry 1998). Concave fitness functions are an appeal-
ingly simple explanation for widespread weak selection, but
evidence for this form of epistasis remains mixed. Some
mutation accumulation studies support increasing negative
effects with declining fitness whereas others support the
opposite pattern (reviewed in de Visser et al. 2011).

Discussion

Although support for weak selection in protein evolution has
accumulated in diverse taxa, adaptive protein evolution and
changes in the distribution of fitness effects can often make
predictions that overlap those of near neutrality. Within-
population comparisons (excess rare amino acid variants)
provide some of the strongest evidence for weak selection
because positive, directional selection should have little
impact on polymorphism data. Associations between levels
of protein polymorphism and estimates of Ne among closely
related populations also support weak selection because DSEs
are likely to be conserved on relatively short time scales.

Distinguishing adaptive, neutral, and nearly neutral
modes of molecular evolution remains challenging. All three
mechanisms enjoy sufficient support to be considered
among potential explanatory factors in almost all studies
that infer mechanisms of genome evolution. For polymor-
phism analyses, near neutrality can cause differences in
levels of variation and in frequency spectra among func-
tional categories of mutations or among populations. In
among-species comparisons, weak selection may underlie
considerable variation in rates and patterns of divergence.
Slightly deleterious amino acid mutations can reduce the
power to detect adaptive protein evolution but can also
generate a false signal of adaptive fixations under particular
scenarios of population size change. Weak selection in the
comparison class in tests of adaptive protein evolution
(often synonymous DNA changes) can also contribute to
false signals of positive selection (Akashi 1999a).

Compensatory evolution, and small fitness effects in
adaptive evolution more generally, may be important factors
in protein evolution but have been difficult to test. Evidence
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for such factors is stronger at synonymous sites, in RNA
genes, and in noncoding DNA than in protein evolution in
part because functional and fitness effects of mutations can
be predicted (e.g., translationally preferred vs. unpreferred
synonymous changes, destabilizing and stabilizing changes
in RNA stem structures). Further incorporation of biophysi-
cal principles may be essential for advancing our under-
standing of protein evolution. Models of protein evolution
that account for both stability and activity effects have the
potential to predict fitness effects of amino acid changes
(Depristo et al. 2005; Bloom et al. 2007b; Tokuriki and
Tawfik 2009b; Wilke and Drummond 2010; Goldstein
2011; Wylie and Shakhnovich 2011) and may help to de-
termine the proportion of compensatory subsitutions
among adaptive fixations. This information, in combination
with experimental approaches (e.g., Bershtein et al. 2006;
Bloom et al. 2007a; Araya and Fowler 2011), will allow
tests of Ohta’s (1973) prediction of fundamental relation-
ships among protein primary structure, folding, and weak
selection.
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Species	
  (population)	
  name	
   πN	
   πS	
   #	
  of	
  gene	
   Reference	
  

Drosophila	
   	
   	
   	
   	
  

Drosophila	
  melanogaster	
   1.9	
  ×	
  10-­‐3	
   	
   2.3	
  ×	
  10-­‐2	
   	
   419	
   (SHAPIRO	
  et	
  al.	
  2007)	
  

D.	
  simulans	
   2.6	
  ×	
  10-­‐3	
   	
   3.5	
  ×	
  10-­‐2	
   	
   11,466	
   (BEGUN	
  et	
  al.	
  2007)	
  

D.	
  ananassae	
   1.4	
  ×	
  10-­‐3	
   	
   2.4	
  ×	
  10-­‐2	
   	
   29	
   (GRATH	
  et	
  al.	
  2009)	
  

D.	
  americana	
   4.0	
  ×	
  10-­‐4	
   	
   2.5	
  ×	
  10-­‐2	
   	
   10	
   (MASIDE	
  and	
  CHARLESWORTH	
  2007)	
  

D.	
  miranda	
   7.2	
  ×	
  10-­‐4	
   	
   6.6	
  ×	
  10-­‐3	
   	
   37	
   (HADDRILL	
  et	
  al.	
  2010)	
  

D.	
  pseudoobscra	
   6.6	
  ×	
  10-­‐4	
   	
   2.3	
  ×	
  10-­‐2	
   	
   37	
   (HADDRILL	
  et	
  al.	
  2010)	
  

D.	
  mauritiana	
   1.1	
  ×	
  10-­‐3	
   	
   1.9	
  ×	
  10-­‐2	
   	
   17	
   (MCDERMOTT	
  and	
  KLIMAN	
  2008)	
  

Yeasts	
  

	
   	
  

	
   	
  

Saccaromyces	
  cerevisiae,	
  European	
   5.2	
  ×	
  10-­‐4	
   	
   1.4	
  ×	
  10-­‐3	
   	
   3132	
   (ELYASHIV	
  et	
  al.	
  2010)	
  

S.	
  cerevisiae,	
  Malaysian	
   1.6	
  ×	
  10-­‐4	
   	
   4.4	
  ×	
  10-­‐4	
   	
   3132	
   (ELYASHIV	
  et	
  al.	
  2010)	
  

S.	
  cerevisiae,	
  sake	
   7.3	
  ×	
  10-­‐4	
   	
   2.7	
  ×	
  10-­‐3	
   	
   3132	
   (ELYASHIV	
  et	
  al.	
  2010)	
  

S.	
  paradoxus,	
  European	
   5.0	
  ×	
  10-­‐4	
   	
   2.1	
  ×	
  10-­‐3	
   	
   3132	
   (ELYASHIV	
  et	
  al.	
  2010)	
  

S.	
  paradoxus,	
  Far	
  Eastern	
   3.8	
  ×	
  10-­‐4	
   	
   1.5	
  ×	
  10-­‐3	
   	
   3132	
   (ELYASHIV	
  et	
  al.	
  2010)	
  

S.	
  paradoxus,	
  North	
  American	
   7.4	
  ×	
  10-­‐4	
   	
   4.6	
  ×	
  10-­‐3	
   	
   3132	
   (ELYASHIV	
  et	
  al.	
  2010)	
  

Plants	
   	
   	
   	
   	
  

Populus	
  tremula	
   1.7	
  ×	
  10-­‐3	
   	
   1.2	
  ×	
  10-­‐2	
   	
   77	
   (INGVARSSON	
  2010)	
  

Capsella	
  grandiflora	
   1.8	
  ×	
  10-­‐3	
   	
   2.3	
  ×	
  10-­‐2	
   	
   257	
   (SLOTTE	
  et	
  al.	
  2010)	
  

Arabidopsis	
  thaliana	
   1.7	
  ×	
  10-­‐3	
   	
   7.2	
  ×	
  10-­‐3	
   	
   483	
   (SLOTTE	
  et	
  al.	
  2010)	
  

A.	
  halleri	
   2.6	
  ×	
  10-­‐3	
   	
   1.7	
  ×	
  10-­‐2	
   	
   24	
   (HEIDEL	
  et	
  al.	
  2010)	
  

Helianthus	
  petiolaris	
   3.4	
  ×	
  10-­‐3	
   	
   3.1	
  ×	
  10-­‐2	
   	
   35	
   (STRASBURG	
  et	
  al.	
  2011)	
  

H.	
  paradoxus	
   1.4	
  ×	
  10-­‐3	
   	
   4.6	
  ×	
  10-­‐3	
   	
   35	
   (STRASBURG	
  et	
  al.	
  2011)	
  

H.	
  exilis	
   3.1	
  ×	
  10-­‐3	
   	
   2.0	
  ×	
  10-­‐2	
   	
   35	
   (STRASBURG	
  et	
  al.	
  2011)	
  

H.	
  tuberosus	
   4.0	
  ×	
  10-­‐3	
   	
   2.4	
  ×	
  10-­‐2	
   	
   35	
   (STRASBURG	
  et	
  al.	
  2011)	
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Estimates	
   of	
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   sites	
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  10-­‐2	
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   (STRASBURG	
  et	
  al.	
  2011)	
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