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ABSTRACT
The primary structures of peptides may be adapted for efficient synthesis as well as proper function.

Here, the Saccharomyces cerevisiae genome sequence, DNA microarray expression data, tRNA gene numbers,
and functional categorizations of proteins are employed to determine whether the amino acid composition
of peptides reflects natural selection to optimize the speed and accuracy of translation. Strong relationships
between synonymous codon usage bias and estimates of transcript abundance suggest that DNA array data
serve as adequate predictors of translation rates. Amino acid usage also shows striking relationships with
expression levels. Stronger correlations between tRNA concentrations and amino acid abundances among
highly expressed proteins than among less abundant proteins support adaptation of both tRNA abundances
and amino acid usage to enhance the speed and accuracy of protein synthesis. Natural selection for
efficient synthesis appears to also favor shorter proteins as a function of their expression levels. Comparisons
restricted to proteins within functional classes are employed to control for differences in amino acid
composition and protein size that reflect differences in the functional requirements of proteins expressed
at different levels.

THE predominant view of protein evolution consid- Akashi 1996; Gutiérrez et al. 1996; Percudani et al.
1997). Although individual amino acid mutations areers fitness effects of amino acid changes that arise

from gene-specific relationships between the primary likely to have small effects on overall cellular physiology,
global evolutionary forces could underlie proteome-structures of encoded polypeptides and their particular

function(s) (Nei 1975; Kimura 1983; Li 1997). Critical wide patterns of amino acid composition as well as varia-
tion in rates of protein evolution.properties of proteins (i.e., specificity, activity, or stabil-

ity) depend on particular amino acids in specific regions Among microbes, as well as multicellular eukaryotes,
synonymous codon usage is coadapted with tRNA poolsof their structures. Mutation pressure and genetic drift
to enhance the efficiency of protein synthesis (revieweddetermine encoded amino acids and their evolutionary
in Andersson and Kurland 1990; Sharp et al. 1993;divergence at sites where protein function is more toler-
Akashi 2001). Among codons recognized by differentant to amino acid replacements.
aminoacyl tRNAs (aa-tRNAs), translationally preferredSelection pressures related to efficient synthesis, rather
codons tend to be recognized by the more abundantthan to proper function, of proteins are less firmly estab-
isoacceptor. Among codons recognized by the samelished. Amino-acid-altering mutations could affect fit-
isoacceptor (through “wobble” pairing), preferred co-ness through physiological effects that are independent
dons generally have intermediate codon-anticodon sta-of their effects on protein function. Amino acids may
bility (Grosjean and Fiers 1982; Ikemura 1985; Yamaovary in the energetic costs of their biosynthesis (Rich-
et al. 1991; Kanaya et al. 1999; Percudani and Otto-mond 1970; Karlin and Bucher 1992; Lobry and Gau-
nello 1999). In Escherichia coli, translation of majortier 1994; Dufton 1997; Craig and Weber 1998;
codons occurs 3- to 6-fold more quickly (Robinson etGarat and Musto 2000; Jansen and Gerstein 2000;
al. 1984; Varenne et al. 1984; Sorensen et al. 1989)Akashi and Gojobori 2002; Zavala et al. 2002), the
and 10-fold more accurately (Precup and Parker 1987)complexity of their biosynthetic pathways (Karlin and
than translation of minor codons. Thus, major codonsBucher 1992; Dufton 1997; Craig and Weber 1998),
allow efficient use of ribosomes and reduce the cost ofrequirements for limiting resources (Mazel and Mar-
GTP-dependent “proofreading” or rejection of noncog-lière 1989; Craig et al. 2000; Baudouin-Cornu et al.
nate isoacceptors. In addition, accurate translation re-2001), or the speed and accuracy with which their isoac-
duces the costs of producing dysfunctional peptides re-ceptors are translated (Eigen and Schuster 1979; Tri-
sulting from misincorporations and processivity errorsfonov 1987; Shpaer 1989; Lobry and Gautier 1994;
(frameshifting and premature termination). Stronger
codon usage bias in highly expressed genes reflects in-
creases in the fitness benefits of major codons with the
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E-mail: akashi@psu.edu codon preference among synonymous codons was ap-
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parent from early examinations of small numbers of their synthesis. Selection for efficient biosynthesis may
also constrain protein size; among proteins in the sameyeast genes (Bennetzen and Hall 1982; Ikemura 1982;

Sharp et al. 1986) and is consistent with large population broad functional category, proteins encoded by highly
expressed genes are consistently smaller than those en-sizes and a close relationship between growth rate and

fitness in these microbes. coded by less expressed loci.
Among tRNAs carrying different amino acids, varia-

tion in either cellular concentrations or codon-anticodon
MATERIALS AND METHODSstability could lead to translation selection both within

and among synonymous families (Shpaer 1989; Lobry Yeast gene sequences: S. cerevisiae protein-coding sequences
and Gautier 1994; Akashi 1996; Percudani et al. 1997; and descriptions (Goffeau et al. 1996) were obtained from
Morton and So 2000; Akashi 2001). Amino acid com- ftp://genome-ftp.stanford.edu/pub/yeast/. Mitochondrial DNA-

encoded genes, short coding regions (!100 codons), andposition is related to gene expression in prokaryotes
genes identified as originating from phage or transposable(Shpaer 1989; Yamao et al. 1991; Lobry and Gautier
elements were excluded from the analysis. In addition, genes1994; Gutiérrez et al. 1996; Akashi and Gojobori with recent common ancestors (paralogs) were identified by

2002; Zavala et al. 2002), yeast (Ikemura 1982; Percu- performing unfiltered BLAST (Altschul et al. 1990) searches
dani et al. 1997; Jansen and Gerstein 2000), Giardia among all pairs of proteins encoded in the genome. Pairs of

protein sequences showing alignments with "60% identitylamblia (Garat and Musto 2000), Caenorhabditis elegans
over "60 amino acids were formed into clusters and one gene(Duret 2000), and plant chloroplasts (Morton and So
from each cluster was included in the analysis. To maintain2000). Furthermore, amino acids represented by abun- the sample size of highly expressed loci, the gene with the

dant tRNAs tend to be preferentially encoded in highly highest estimate of transcript abundance (see below) was cho-
expressed genes (Shpaer 1989; Yamao et al. 1991; sen from each cluster.

Yeast expression data and functional categorization of pro-Lobry and Gautier 1994; Percudani et al. 1997; Duret
teins: Transcript abundance data from Holstege et al. (1998)2000). However, highly expressed proteins fall into par-
were obtained from http://web.wi.mit.edu/young/expression/ticular functional categories (i.e., energy metabolism transcriptome.html and protein abundance measures (from

and protein synthesis) and tRNA pools could simply 2D gel data) were taken from Futcher et al. (1999). Functional
be adjusted to match the amino acid requirements for categorizations of gene products were obtained from the Yeast

Protein Database (YPD; Costanzo et al. 2000; https://www.proper functioning of these proteins (Garel 1974;
incyte.com/proteome/YPDcategories/Functional_Categories.Ikemura 1982; Yamao et al. 1991; Xia 1998; Duret
html). Composite categories were constructed for 1571 genes2000). listed in more than one category. Using this criterion, I found

In multicellular eukaryotes, tissue-specific tRNA abun- that yeast proteins fall into 259 different functional categories
dances have been found in tissues committed to high (including “unknown”) and 128 of the categories contain a

single gene. Only genes listed in both the YPD and the Hols-expression of a small number of genes. tRNA concentra-
tege transcript abundance database were included in the analy-tions match amino acid usage of fibroin in the posterior
ses. Of the 6310 predicted yeast protein-coding genes, 5483silk gland of the silkworm Bombyx mori L. and crystallines were included in the final data set (see supplemental material

in the calf lens (Garel 1974) and hemoglobin in rabbit at http://www.genetics.org/supplemental/).
and human reticulocytes (Hatfield et al. 1982). Garel Sequence and expression data for C. elegans, Drosophila

melanogaster, Bacillus subtilis, and E. coli: Coding sequences(1974) proposed “functional adaptation of tRNA”; selec-
and estimates of transcript abundances [from matches to ex-tion for efficient translation regulates cellular tRNA
pressed sequences tag (EST) libraries] for C. elegans and D.isoacceptor concentrations to match the amino acid
melanogaster (Marais et al. 2001) were obtained from http://requirements of highly expressed proteins but does not pbil.univ-lyon1.fr/datasets/Marais2001/data.html. Short cod-

affect their composition or evolutionary rates. ing regions (!100 codons) and genes identified as originating
This study attempts to distinguish between unidirec- from phage or transposable elements were excluded from

the analysis. Single members of each family of paralogs weretional adjustments of tRNA pools to the amino acid
included as described above. Genes that were not listed in therequirements of highly expressed genes and coadapta-
Marais et al. (2001) expression data files were not includedtion of both isoacceptor concentrations and amino acid in the analysis. A total of 11,546 and 11,864 predicted genes

usage in the budding yeast, Saccharomyces cerevisiae. were analyzed from D. melanogaster and C. elegans, respectively.
Strong associations between synonymous codon usage E. coli and B. subtilis data are described in Akashi and Gojo-

bori (2002).and oligonucleotide DNA array estimates of mRNA lev-
Identification of major codons: Major codon usage (MCU)els suggest that estimates of transcript abundance pro-

was calculated as (number of major codons)/(number of ma-vide informative predictors of the translation rates of jor codons # number of minor codons). Identities of major
genes. Usage of several amino acids shows associations codons for S. cerevisiae were taken from Kanaya et al. (1999)
with gene expression, and changes in amino acid com- except for glutamic acid [the major codon was identified as

GAA in Ikemura (1982)]. Major codons were taken fromposition result in stronger correlations between amino
Akashi (1995) for D. melanogaster, Duret (2000) for C. elegans,acid usage and tRNA abundances in highly expressed
and Kanaya et al. (1999) for E. coli and B. subtilis [with modifi-genes than in less expressed loci. Similar relationships
cations described in Akashi and Gojobori (2002)]. Serine

within protein functional categories suggest that the codons were divided into fourfold and twofold families so that
primary structures of proteins reflect, at least in part, each synonymous family is composed of codons that encode

the same amino acid and that are connected by single muta-natural selection to enhance the rate and accuracy of
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tional steps. Major codons for the two serine families were
identified as those showing significant positive correlations
with either gene expression [S. cerevisiae (Table 1) and C.
elegans] or major codon usage for nonserine families (E. coli
and B. subtilis).

Analyses of whole-genome data: Spearman rank correla-
tions were employed in the whole-genome analyses. Because
abundances for some codons and amino acids are quite low,
analyses were conducted on binned data. Genes were ranked
by the Holstege et al. (1998) estimates of transcript abun-
dance and data were pooled for genes with low to high tran-
script abundance until 5000 codons were reached for each bin
(all genes with identical expression estimates were included in
the same bin). The numbers of genes in low expression bins
were elevated by large numbers of identical estimates of tran-

Figure 1.—Distribution of transcript abundances of yeastscript abundance. For statistical analyses, codon and amino
genes. Data are from Holstege et al. (1998). The first columnacid usages were compared among 65 expression classes con-
plots the number of genes with no detectable transcripts.taining an average of 84 genes each. Bins of 50,000 codons
Other columns plot the numbers of genes with transcriptwere employed for visualization of trends (Figures 2, 3, 4,
abundances between a lower limit shown below the columnsand 6).
and an upper limit shown beneath the column to the rightAnalyses within functional categories: Within functional cat-
(the last column has no upper limit).egories, amino acid usage was compared between genes falling

above and below a cutoff of one transcript per cell. Amino
acid abundances were compared in 2 $ 2 contingency tables;
the columns of the tables were the high and low expression cules (Hereford and Rosbash 1977). Figure 1 plots
classes and the rows consisted of the counts of a particular the distribution of transcript abundances among yeast
amino acid and the pooled counts for all other amino acids. genes from the high-density oligonucleotide array dataThe Mantel-Haenszel procedure (Snedecor and Cochran

of Holstege et al. (1998) from yeast cells grown to mid-1989) was employed to calculate an overall probability for
departures from equal amino acid usage among low and high log phase in YPD media. The distribution of transcript
expression genes across contingency tables from different abundance is strongly skewed toward low values; %80%
functional categories. Thirty-one functional categories con- of genes are represented by &2 mRNA molecules and
taining "10 genes in both expression classes were included only 3.5% of genes have transcript abundances of "10in the analysis. “Unknown” was not included as a functional

mRNA molecules per cell. Futcher et al. (1999) foundcategory.
The proportion of amino acids falling within “low complex- good correspondence between 2D gel quantifications

ity” regions was analyzed in a similar manner. The rows of of protein concentrations (ranging from 200 to 2 $ 106

2 $ 2 contingency tables consisted of the numbers of codons molecules/cell) and estimates of transcript abundances.
that fall within and outside of low complexity regions identi- They estimate a rate of protein synthesis of roughly 4000fied by the SEG and SEGN programs (Wootton and Feder-

proteins/transcript for genes represented by "1 mRNAhen 1996) using default parameter settings. The columns were
the low- and high-expression classes and Mantel-Haenszel tests molecule/cell. For proteins represented by !1 mRNA/
were conducted as described above. cell, they suggest post-transcriptional regulation; i.e.,

Mann-Whitney U-tests (Snedecor and Cochran 1989) were mRNA abundances are not informative predictors of
employed to test for differences in the mean gene lengths translation rates.of highly and lowly expressed genes within each functional

Synonymous codon usage was examined among ex-category. Z values of Mann-Whitney U-tests were assigned posi-
tive and negative signs for higher and lower mean ranks of pression classes to determine the strength of correspon-
size among highly expressed proteins. To test for a consistent dence between GeneChip estimates of transcript abun-
trend among categories, a Wilcoxon ranked signs test statistic dances and the translation rates of genes. Under major
was calculated for the signed Z values. A null distribution of codon preference, the fitness benefit of a major codonthe test statistic was generated by 106 iterations of random

is strongly dependent on the number of translationassignment of sign (with P ' 0.5) to each Z value and recalcula-
tion of the test statistic. events experienced at a given codon. Coghlan and

Yeast tRNA abundances: Ikemura (1982) quantified cellu- Wolfe (2000) found that !40% of the variation in
lar abundances for 22 yeast tRNAs using 2D gel electrophore- ranks of measures of codon bias among yeast genes
sis. The correlation between these measurements and the copy was explained by transcript abundance (Spearman ranknumbers of the corresponding tRNA genes in the S. cerevisiae

correlation, rs ' 0.62). However, correlations betweengenome (Percudani et al. 1997) is remarkably high (r 2 '
0.803). To include all 41 isoaccepting tRNAs in the analyses, major codon usage and transcript abundance are re-
the gene copy numbers of Percudani et al. (1997) were em- markably high in comparisons among bins of genes
ployed as estimates of tRNA abundances. with similar expression estimates (Akashi 2001; Table 1;

Figure 2). Similar patterns among synonymous families
that differ in the favored nucleotide in the third codon

RESULTS position (G-favored: Lys, Leu; A-favored: Pro, Gln;
T-favored: Gly; C-favored: Phe, Tyr, His, Asn, Asp) sug-Transcript abundance and translation rates in yeast:

Yeast cells growing at log phase under standard labora- gest both that estimates of transcript abundance are
informative predictors of average translation ratestory conditions contain !15,000 poly(A)-mRNA mole-
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TABLE 1

Transcript abundance and synonymous codon usage in S. cerevisiae

aa Cod rs Pref aa Cod rs Pref aa Cod rs Pref aa Cod rs Pref

F TTT (0.937 u S4 TCT 0.942 p Y TAT (0.904 u C TGT 0.887 p
TTC p TCC 0.872 p TAC p TGC u

L TTA (0.430 u TCA (0.944 u * TAA * TGA
TTG 0.958 p TCG (0.884 u * TAG W TGG
CTT (0.882 u P CCT (0.503 u H CAT (0.754 u R CGT 0.580 p
CTC (0.913 u CCC (0.931 u CAC p CGC (0.817 u
CTA (0.635 u CCA 0.966 p Q CAA 0.914 p CGA (0.910 u
CTG (0.856 u CCG (0.952 u CAG u CGG (0.854 u

I ATT 0.536 p T ACT 0.940 p N AAT (0.956 u S2 AGT 0.073 —
ATC 0.898 p ACC 0.868 p AAC p AGC
ATA (0.978 u ACA (0.944 u K AAA (0.945 u R AGA 0.879 p

M ATG ACG (0.951 u AAG p AGG (0.934 u
V GTT 0.885 p A GCT 0.959 p D GAT (0.748 u G GGT 0.975 p

GTC 0.932 p GCC 0.653 p GAC p GGC (0.886 u
GTA (0.965 u GCA (0.970 u E GAA 0.893 p GGA (0.969 u
GTG (0.853 u GCG (0.938 u GAG u GGG (0.924 u

Spearman rank correlation coefficients, rs, are shown for usage of each codon within its synonymous family vs. average transcript
abundance among genes grouped by expression estimates (bin size, 5000 codons). All correlations were statistically significant
after Bonferroni sequential correction for multiple tests (Rice 1989) except for codons in the S2, serine twofold, family. p,
preferred codons, those that increase in frequency in highly transcribed genes; u, unpreferred codons, those that decrease in
frequency.

(among binned genes) and that translation selection is genes (Figure 3). These patterns correspond to differ-
ences in the numbers of tRNA genes (presumably re-sufficient to overcome mutational biases associated with

transcription (Datta and Jinks-Robertson 1995; sulting in higher tRNA abundances) that recognize the
twofold and fourfold families for these amino acids.Morey et al. 2000) and substitutional biases associated

with gene conversion (Gerton et al. 2000; Birdsell Translational selection appears to discriminate among
synonymous codons recognized by nonoverlapping2002). Codon preferences determined using microarray

estimates of transcript abundance are consistent with groups of tRNAs. Similar preferences may also bias the
usage of codons that encode different amino acids.those established through correspondence analysis of

codon usage (Sharp and Cowe 1991; Kanaya et al. Gene expression and amino acid composition in
yeast: Abundances for a number of amino acids are1999).

Seven of the twofold synonymous families (all NNY strongly correlated with gene expression levels (Table
2). The magnitude of changes in abundance can betypes) are recognized by a single isoacceptor through

wobble pairing at the third codon position. Six of these quite large; alanine usage increases by greater than two-
fold in highly expressed genes and serine twofold co-families (Asn, Asp, Cys, His, Phe, and Tyr) show steady

increases in usage of a single codon in highly transcribed dons are only one-third as abundant in highly expressed
genes (Figure 4).genes (Table 1; Figure 2). Such patterns are consistent

with translational selection for codon-anticodon stabil- In S. cerevisiae, estimates of transcript abundance show
strong positive associations with the frequency of mei-ity (Grosjean et al. 1978; Percudani and Ottonello

1999). otic double-strand breaks, a measure of local recombina-
tion rate (Gerton et al. 2000; Birdsell 2002). The latterCodon usage for amino acids encoded by sixfold re-

dundant codons provide the clearest evidence for trans- is also positively correlated with both intergenic and
third position GC content (Birdsell 2002), suggestinglational preferences related to tRNA abundances. Third

codon position wobble rules for eukaryotes are ambigu- that biased gene conversion elevates G # C content.
However, associations between amino acid usage andous (Percudani 2001), but wobble pairing is not known

to occur at the first codon position. Thus, fourfold and estimates of recombination rate are considerably smaller
than associations with transcript abundance (data avail-twofold redundant families for Leu, Arg, and Ser are

recognized by nonoverlapping sets of tRNAs. Usage of able from H. Akashi).
The interpretation of relationships between gene ex-twofold codons for Leu (rs ' 0.933, P ! 10(5) and Arg

(rs ' 0.558, P ! 10(5) increases dramatically whereas pression and amino acid composition is less straightfor-
ward than that for similar associations among synony-twofold codons for Ser decrease (rs ' (0.897, P ! 10(5)

within their synonymous families in highly expressed mous codons. Changes in amino acid usage could reflect
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Figure 2.—Transcript abun-
dance and major codon usage. Data
are graphed for expression catego-
ries (bin sizes "50,000 codons).
Abundances are within synonymous
families.

differences in the functional roles of proteins expressed amino acid composition was compared among genes
classified into common functional categories in theat different levels (Garel 1974; Ikemura 1982; Yamao

et al. 1991; Xia 1998; Duret 2000). For example, Jansen Yeast Proteome Database (Costanzo et al. 2000). Table
3 shows the 31 different categories containing at leastand Gerstein (2000) showed that transcript abun-

dances are higher for cytosolic proteins than for mem- 10 genes in both the low (one or less transcript per
cell) and the high (more than one transcript per cell)brane proteins in yeast. Greater usage of hydrophobic

residues in less expressed proteins may reflect a greater expression classes. There are clear differences in expres-
sion patterns among these categories; transcription fac-abundance of transmembrane regions. To control for

differences in the functional requirements of proteins, tors and membrane proteins/transporters tend to be

Hiroshi Akashi
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Figure 3.—Transcript
abundance and codon us-
age in sixfold redundant
families. The numbers of
tRNAs that recognize two-
fold and fourfold degener-
ate codons are shown (two-
fold/fourfold). Data are
graphed for expression cat-
egories (bin sizes "5 $ 104

codons). Abundances are
within synonymous families.

represented by few transcripts. Two classes of more expressed genes may simply be those required for
proper functioning of ribosomal proteins and cytosolicabundant transcripts encode oxidoreductases, includ-

ing enzymes of central metabolism and amino acid bio- enzymes.
For analyses within the 31 functional categories,synthesis, and proteins involved in translation, such as

ribosomal proteins and elongation factors. Transcript amino acid usage was compared between low- and high-
expression classes in 2 $ 2 contingency tables. Table 2abundances for these classes are consistent with esti-

mates of 200,000 ribosomes/cell in rapidly growing shows, for each amino acid, the number of individually
significant 2 $ 2 tests as well as the probability of theyeast (Warner 1999) and 2,000,000 molecules/cell for

some glycolytic enzymes (Futcher et al. 1999). Thus, overall trend across tables. With cutoff values of two,
three, and four transcripts per cell to divide high- andamino acids that are employed more often in highly

TABLE 2

Gene expression and amino acid composition in yeast

Fun cat (31)
tRNA

Amino acid gene no. Codons Usage All genes (rs) G test Z

Ala 16 GCN 0.054 0.930* 22/0 24.99*
Gly 21 GGN 0.049 0.849* 20/0 21.74*
Val 18 GTN 0.056 0.847* 9/0 11.06*
Thr 16 ACN 0.058 0.140 1/1 0.81
Lys 21 AAR 0.074 0.133 1/3 (0.38
Glu 16 GAR 0.066 0.096 5/3 2.83*
Tyr 8 TAY 0.033 (0.055 1/6 (4.55*
Met 5 ATG 0.019 (0.106 3/0 1.21
Arg 19 CGN, AGR 0.045 (0.123 2/4 (2.94*
Pro 12 CCN 0.043 (0.159 2/4 (1.83
Trp 6 TGG 0.010 (0.179 2/0 0.41
Asp 15 GAY 0.059 (0.245 5/1 3.83*
Phe 10 TTY 0.045 (0.325 2/2 (2.93*
Ser4 15 TCN 0.066 (0.359* 2/4 (2.57
Cys 4 TGY 0.013 (0.478* 2/5 (5.52*
His 10 CAY 0.022 (0.508* 1/4 (2.8*
Gln 7 CAR 0.040 (0.508* 3/3 1.3
Ile 15 ATH 0.066 (0.540* 0/8 (7.97*
Leu 21 TTR, CTN 0.097 (0.847* 0/8 (11.76*
Ser2 4 AGY 0.025 (0.892* 0/18 (15.48*
Asn 10 AAY 0.062 (0.911* 0/17 (15.42*

tRNA gene copy numbers are from Percudani et al. (1997). The numbers are pooled among genes encoding
isoacceptors for each amino acid. Frequency of usage of amino acids in the genome is shown. Amino acids
are listed in order of decreasing Spearman rank correlations, rs, in all gene analyses among 65 expression
classes (bin size "5000 codons). Functional category (fun cat) analyses were conducted among 31 categories
with at least 10 genes in the high- and low-expression groups, using a cutoff of one transcript per cell. Amino
acid composition was compared in 2 $ 2 contingency tables for each amino acid within each functional
category. G test shows the numbers of tables with higher/lower abundance in the high expression class (G
tests with significance level of P ! 0.05 uncorrected for multiple tests). The Z statistic of the Mantel-Haenszel
procedure for the data pooled across functional categories is also shown for each amino acid. *P ! 0.05 after
Bonferroni sequential correction for multiple tests (Rice 1989).
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Figure 4.—Transcript abundance and amino acid usage. Data are graphed for expression categories (bin sizes "5 $ 104

codons). Abundances are among all codons.

low-expression classes, the numbers of functional cate- that experience few translation events will be under
little or no selection for translationally preferred codonsgories with at least 10 genes in each expression class

reduce to 21, 15, and 11, respectively. However, the (among either synonymous or nonsynonymous alterna-
tives). Thus, relationships between tRNA abundancemain trends of amino acid usage are robust to these

cutoff values; Mantel-Haenszel test statistics remain sig- and amino acid usage should show substantial scatter.
However, under translational selection, the magnitudenificantly positive for Val, Ala, Gly, and Glu and negative

for Phe, Leu, Ile, His, Asn, Cys, and Ser2 for cutoff values of fitness differences among codons recognized by rare
and common isoacceptors should increase as a functionbetween one and four transcripts per cell.

Several amino acids show strong statistical associa- of gene expression levels. Such fitness differences may
exist among nonsynonymous as well as synonymous al-tions with expression levels in both whole-genome and

within-category analyses. Ala, Val, and Gly show strong ternatives. In highly expressed genes, translational selec-
tion at positions of peptides otherwise determinedincreases in abundance in highly expressed genes,

whereas Leu, Ser2, and Asn show strong declines (Figure largely by mutation drift will result in greater correspon-
dences between amino acid usage and tRNA abun-4). For such amino acids, changes in the relative abun-

dances of different types of proteins in different expres- dances.
Figure 6 shows that the Pearson product-moment cor-sion classes are unlikely to explain relationships between

amino acid usage and expression levels. These patterns relation coefficient between amino acid usage and tRNA
gene numbers increases steadily as a function of geneare consistent with Jansen and Gerstein’s (2000) find-

ings through comparison of amino acid composition of expression levels (5000 codons/bin, rs ' 0.68, Z ' 6.39,
P ! 10(5). Plots are shown for bins of 50,000 codons.the yeast genome and transcriptome (amino acid usage

for a given gene was weighted by estimates of its tran- Stronger correlations between amino acid usage and
tRNA gene copy numbers in highly expressed proteinsscript abundance). However, results for some amino

acids (Gln, Ser4, Arg, Glu, and Tyr) differ between the within functional categories (Table 3) support the con-
tribution of translational selection in determining theall-gene and within-category analyses. Such patterns

could reflect differences in the functional requirements amino acid composition of proteins (Wilcoxon ranked
signs test, P ! 10(5).of genes in different expression classes or differences

in the statistical power of the two approaches. In either Gene expression and protein size: Given some toler-
ance of protein function to insertion/deletion variation,case, these amino acids show small differences in abun-

dance between lowly and highly expressed genes. translational selection will favor reductions in protein
size (Akashi 1996). Eliminating codons from a givenAmino acid usage and tRNA abundances: Relation-

ships between amino acid usage and tRNA gene num- gene will reduce the amount of time that ribosomes
spend translating its transcripts and enhance the overallbers for yeast genes with low, intermediate, and high

transcript abundance are shown in Figure 5. Codons rate of proteins synthesized per ribosome per time. En-
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TABLE 3

Analyses within yeast protein functional categories: expression levels and tRNA vs. amino acid usage and protein sizes

[tRNA] vs.
Gene no. [amino acid] Protein size (avg.)

Functional category [mRNA] ! 1 [mRNA] " 1 Low r High r Low High MWU Z

Active transporter, secondary # major facilitator 34 17 0.711 0.718 559.2 587.4 (1.40
superfamily # transporter

Active transporter, secondary # transporter 53 47 0.768 0.758 600.4 535.8 1.05
ATPase # helicase # hydrolase # RNA-binding 12 19 0.867 0.910 1100.4 624.1 2.84

protein
Chaperones 15 21 0.759 0.878 476.1 366.8 1.35
Complex assembly protein 22 19 0.743 0.866 577.7 400.1 1.22
DNA-binding protein 45 17 0.789 0.875 651.0 267.0 4.96
DNA-binding protein # transcription factor 50 15 0.626 0.631 505.3 514.8 0.42
GTP-binding protein/GTPase # hydrolase 13 27 0.855 0.888 452.3 289.4 1.92
Hydrolase 61 40 0.862 0.863 509.9 399.9 1.33
Hydrolase # other phosphatase 13 13 0.814 0.878 501.5 408.0 0.08
Hydrolase # protease (other than proteasomal) 34 29 0.777 0.835 693.4 554.2 1.83
Hydrolase # protein phosphatase 15 17 0.703 0.804 551.3 434.1 1.51
Inhibitor or repressor 12 15 0.703 0.825 467.8 486.7 0.39
Ligase 16 26 0.820 0.903 712.6 768.5 0.60
Ligase # RNA-binding protein # tRNA synthetase 15 21 0.841 0.885 551.6 694.5 (2.05
Lyase 26 40 0.886 0.915 507.7 458.4 (0.12
Nuclear import/export protein 22 27 0.709 0.737 1023.9 764.0 1.75
Other kinase # transferase 25 25 0.814 0.897 677.2 521.0 2.22
Oxidoreductase 53 108 0.885 0.899 509.8 400.8 2.42
Protein conjugation factor 16 14 0.754 0.825 511.5 394.6 1.21
Protein kinase # transferase 87 20 0.780 0.827 754.4 532.6 2.89
Receptor (protein translocation) 14 18 0.779 0.850 610.9 336.9 2.36
Regulatory subunit 16 12 0.654 0.833 592.6 366.6 2.79
RNA-binding protein 37 42 0.697 0.865 579.0 471.9 1.66
RNA-binding protein # ribosomal subunit 17 110 0.876 0.940 301.3 194.4 3.92
RNA-binding protein # spliceosomal subunit 35 13 0.823 0.826 417.0 381.3 2.80
Structural protein 38 29 0.729 0.834 641.7 407.8 2.41
Transcription factor 137 51 0.711 0.784 670.3 563.2 2.18
Transferase 91 136 0.827 0.856 496.5 484.5 1.63
Translation factor 11 17 0.834 0.871 460.6 483.4 (0.05
Transporter 13 15 0.721 0.730 596.4 404.1 0.62

Functional categorizations are from the Yeast Protein Database (Costanzo et al. 2000). The numbers of genes in low (less
than transcript per cell) and high (one or more transcripts per cell) expression groups are shown. Pearson product-moment
correlation coefficients, r, for relationships between tRNA gene copy numbers (Percudani et al. 1997) and amino acid abundances
are shown for the two expression classes within each functional category. Average sizes of proteins were compared among the
high- and low-expression classes. Z statistics from the Mann-Whitney U-test (MWU Z) are shown (positive values indicate lower
mean ranks of size among highly expressed proteins).

ergy expenditure for both amino acid and protein syn- 27 show a higher mean rank of protein size among
the less highly expressed proteins and 4 deviate in thethesis will also be reduced. The magnitude of time and

energy savings, and, consequently, the fitness advantage opposite direction (Table 3). Mann-Whitney U-tests
show significant departures at the 5% level (prior toof protein size reduction will be a function of the num-

ber of times a given gene is translated. correction for multiple tests) for 12 of the 31 classes;
highly expressed proteins are smaller in 11 of these 12Negative correlations between gene length and both

synonymous codon bias (Moriyama and Powell 1998) classes. Overall, highly expressed genes tend to encode
smaller proteins than do less expressed proteins in theand transcript abundance (Coghlan and Wolfe 2000;

Jansen and Gerstein 2000; Pal et al. 2001b) have been same functional category (Wilcoxon ranked signs test,
P ! 10(5). Protein length is also negatively correlatedfound among yeast genes. However, previous studies

did not control for differences in the functional require- with 2D gel quantifications of abundance for 64 proteins
(Futcher et al. 1999) from cells grown on both glucosements of proteins among expression classes, such as

the lack of highly expressed transmembrane proteins. (rs ' (0.47, P ! 10(4) and ethanol (rs ' (0.33, P !
0.005).Among the 31 functional categories of yeast proteins,
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Figure 5.—Correlations between amino acid usage and tRNA gene copy numbers. tRNA gene copy numbers are from
Percudani et al. (1997). The numbers are pooled among genes encoding isoacceptors for each amino acid.

To determine whether low complexity nucleotide se- B. subtilis (Akashi and Gojobori 2002), and C. elegans
(our unpublished data) proteins.quences (including homonucleotide runs and short re-

peats) contribute to differences in protein sizes among
expression classes, simple sequences were identified us-
ing the SEGN software (Wootton and Federhen DISCUSSION
1996). Of the 31 functional categories, 21 show a higher Establishing translational selection in protein evolu-percentage of simple sequences in less expressed pro- tion: Major codon preference posits adaptation of both
teins and 10 deviate in the opposite direction. A Mantel- tRNA concentrations and synonymous codon usage.
Haenszel test shows significantly lower proportions of Regulation of aa-tRNA abundances may result from rela-
simple nucleotide sequences in highly expressed pro- tively few, strongly selected mutations. However, codon
teins (Z ' 12.29, P ! 10(5). However, this reduction usage bias results from weak selection at thousands of
in simple sequences does not account entirely for the “silent” sites throughout the genome (reviewed in
smaller sizes of highly expressed proteins; differences Andersson and Kurland 1990; Sharp et al. 1993;
in the sizes remain highly significant after removal of Akashi 2001). Although relationships between amino
low-complexity regions (Wilcoxon ranked signs test, P ! acid composition and gene expression have been estab-
10(4). Interestingly, the proportion of “low-complexity” lished in yeast (Ikemura 1982; Percudani et al. 1997;
amino acid sequences increases in highly expressed pro- Jansen and Gerstein 2000), translation selection in
teins within functional categories; 20 of 31 categories protein evolution has been difficult to substantiate be-
deviate in this direction and the overall pattern is highly cause associations between amino acid composition and
statistically significant (Mantel-Haenszel test, Z ' 20.06, tRNA abundances can be explained by selection on
P ! 10(5). This pattern may reflect a greater abundance tRNA concentrations to match the functional needs of
of particular structural motifs (soluble folds with combi-
nations of helices and sheets) represented among highly
expressed proteins (Jansen and Gerstein 2000).

Gene expression and GNN usage: In yeast, GCN,
GGN, and GTN codons for Ala, Gly, and Val, respec-
tively, show the strongest increases in usage in highly
expressed genes (Table 2; Figure 4). Figure 7 shows
that such patterns are common to many prokaryotes and
multicellular eukaryotes. GNN usage shows remarkably
consistent increases in abundance with measures of
translation rates (either estimates of transcript abun-
dance or measures of synonymous codon usage bias)
in C. elegans, D. melanogaster, B. subtilis, and E. coli (see
also Gutiérrez et al. 1996), as well as yeast. Similar
patterns have been noted in the genomes of plant chlo-

Figure 6.—Correlation between amino acid usage androplasts (Morton and So 2000) and Buchnera (Pala-
tRNA gene copy numbers among expression classes. Data arecios and Wernegreen 2002). GNN increases occur
graphed for expression categories (bin sizes "5 $ 104 codons).among cytosolic and membrane proteins encoded in Pearson product moment correlation coefficients between

plant chloroplast genomes (Morton and So 2000) and tRNA gene copy numbers and amino acid usage are plotted
on the y-axis.within functional categories of yeast (Table 2), E. coli,
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Figure 7.—Gene expression and GNN codon usage among highly diverged genomes. Data are described in the text. The
pooled abundances of GNN codons (Val, Ala, Asp, Glu, and Gly) among all codons are plotted on the y-axis. mRNA abundances
for C. elegans and D. melanogaster are counts of matches to EST libraries (Duret and Mouchiroud 1999) and are employed as
estimators of translation rates. Bin sizes for ranking by mRNA abundances are 5 $ 104 for each genome. MCU, major codon
usage, is the number of major codons/(number of major # minor codons) and is also employed as an estimator of translation
rates. Bins were constructed similarly to transcript abundance estimates (see text) for genes ranked by MCU. Bin sizes are 1 $
105 for S. cerevisiae, C. elegans, and D. melanogaster and 5 $ 104 for B. subtilis and E. coli.

highly expressed proteins (Garel 1974; Ikemura 1982; scription rates could contribute to relationships be-
tween gene expression and codon and amino acid us-Yamao et al. 1991; Xia 1998; Duret 2000).

Here, functional categorizations of proteins were em- age, as well as protein length. In E. coli, transcription
induces C → T transitions on the nontranscribed strand,ployed to distinguish between associations between

gene expression and amino acid composition that arise presumably due to increased deamination of cytosine
(Francino et al. 1996; Beletskii and Bhagwat 1998).as a by-product of the functional requirements of pro-

teins and those that reflect fitness benefits to transla- Genetic experiments in yeast have shown %10-fold in-
creases in rates of (1 frameshift reversion mutationstionally superior codons. Increases in the correlation

between tRNA gene numbers and amino acid usage as with transcription rates (Datta and Jinks-Robertson
1995). However, such experiments screen for particulara function of expression levels among all genes and

similar patterns within broad functional categories sup- types of mutations and the dependence of the overall
spectrum of mutations on transcription has not beenport translational selection. Although the functional cat-

egorizations of proteins may be crude, it is unlikely that determined. In D. melanogaster (Kliman and Hey 1994)
and C. elegans (Duret and Mouchiroud 1999), intronfunctional requirements explain consistent trends in

amino acid usage in nonoverlapping groups of genes. base composition has been examined to determine
whether mutational processes are transcription depen-These findings do not exclude functional adaptation

of isoacceptor abundances. tRNA pools may have been dent. However, the small numbers of introns in the yeast
genome (Davis et al. 2000) and their greater abundanceinitially adjusted to match the functional requirements

of highly expressed ribosomal proteins and enzymes (Ares et al. 1999; Lopez and Seraphin 1999) and
lengths (Vinogradov 2001) in highly expressed tran-of central metabolism. Translational selection would

magnify amino acid usage biases beyond the initial func- scripts suggest that intron base composition does not
reflect mutational equilibrium.tional needs of abundant proteins. The gradual increase

in the correlation between amino acid usage and gene Population genetic analyses of putative fitness classes
of nonsynonymous mutations (Akashi 1995) may pro-expression (Figure 6) supports a contribution of transla-

tional selection in the amino acid composition of even vide a means to distinguish between the contributions
of translational selection and mutational biases in aminomoderately expressed yeast genes. However, Table 2

shows relatively high overall usage of some amino acids acid composition. In contrast to compositional studies
that assume constant mutational processes amongthat appear to be translationally less preferable (i.e.,

Leu, Asn, and Ile), suggesting a balance among forces genes, such analyses assume constancy of mutational
processes within genes over evolutionary time, and theincluding translational selection, functional constraint,

and mutation pressure. statistical power to detect weak selection can be quite
high (Akashi 1999). The compositional analysis under-Associations between mutational processes and tran-
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taken here may provide putative fitness classes of amino Baudouin-Cornu et al. (2001) have shown that yeast
proteins involved in sulfur and nitrogen transport andacid changes for such studies. Rigorous support for

translational selection in yeast protein evolution may processing show reduced levels of amino acids requir-
ing these atoms. Examination of the usage of S- andrequire sequence data from within and between closely

related species. N-containing amino acids among proteins that are
highly expressed during nitrogen or sulfur starvationProperties of translationally preferred aa-tRNAs: The

rate and accuracy of protein synthesis depend on both would add support for nutrient limitation and protein
evolution.the abundances of aa-tRNAs and their intrinsic proper-

ties, such as the stability of codon-anticodon interac- Calculations of the energetic costs of amino acid bio-
synthesis may differ between yeast and E. coli or B. subtilistions. Recent studies have demonstrated conforma-

tional changes in aa-tRNAs, elongation factors, and due to both differences in amino acid biosynthetic path-
ways and alternative energy production pathways (alco-ribosomes during protein synthesis (Ogle et al. 2001).

Codon-anticodon interactions determine rate constants hol fermentation and respiration). Such analyses may
help to explain the identities of amino acids whose usageduring the processes of tRNA selection, proofreading,

and peptidyl transfer, which, in turn, determine both differs between highly and lowly expressed genes but
are not undertaken here.the speed and the accuracy of protein synthesis (re-

viewed in Rodnina and Wintermeyer 2001). Pro- Translational selection and protein size: In the yeast
genome, the smaller sizes of proteins encoded by highlycessing of aa-tRNAs also affects translation of neigh-

boring codons; near-cognate isoacceptors bound at the expressed genes are consistent with selection favoring
reductions in the metabolic costs of protein and/orribosomal P site induce frameshift events at the A site

(Farabaugh 2000). The analyses presented here have amino acid biosynthesis. Relationships between gene
length and expression levels in multicellular eukaryotesfocused on aa-tRNA abundances, an extrinsic property

of isoacceptors, because they can be estimated from are less clear. Duret and Mouchiroud (1999) found
no association between protein length and transcriptgene numbers. However, codon preferences among

nonsynonymous codons are likely to also reflect intrinsic abundance (measured by the numbers of matches of
ESTs to predicted gene sequences) in Arabidopsis thali-properties of tRNAs or the amino acids that they carry.

For example, the decline of Leu usage in highly ex- ana and positive correlations between protein size and
expression in the D. melanogaster and C. elegans. In con-pressed genes may reflect, in part, selection against us-

age of frameshift-prone codons (Farabaugh 2000). trast, Castillo-Davis et al. (2002) employed DNA array
estimates of mRNA abundance and found strong statisti-Increasing GNN usage is the most prominent feature

of associations between amino acid usage and gene ex- cal support for reductions in length among highly ex-
pressed C. elegans genes. Biases in methods for estimat-pression in yeast as well as in a number of distantly

related organisms. Three base nucleotide periodicities ing gene expression will need to be explored and
patterns will need to be studied among proteins of re-in protein-coding genes (Nassar and Cook 1976; Tri-

fonov and Sussman 1980; Shepherd 1981) have been lated function to determine whether gene length and
expression level are related in these organisms. A lackexplained in light of theoretical studies of the early

evolution of the genetic code (Crick et al. 1976; Eigen of negative relationships would be at odds with strong
evidence of selection for metabolic efficiency at silentand Schuster 1979). Trifonov (1987, 1992) has ar-

gued that G:non-G:N codons may aid in maintenance sites in these multicellular eukaryotes (reviewed in
Sharp et al. 1993; Akashi 2001; Duret 2002).of translational reading frame through interactions be-

tween mRNA and 16S rRNA during translation. Bio- Translational selection and protein divergence: Rates
of protein divergence are negatively correlated with ex-chemical studies of protein synthesis will be required

to determine whether GNN codons have special transla- pression levels among yeast genes (Pal et al. 2001a).
Translational selection in protein evolution could pro-tional properties.

Intrinsic features of aa-tRNAs could also include prop- vide an explanation (Akashi 2001); in highly expressed
genes, amino acid changes that may be neutral witherties of amino acids such as their requirements for

limiting resources (Mazel and Marlière 1989; Craig respect to protein function will be selected against if
they decrease the rate or accuracy of protein synthesis.et al. 2000; Baudouin-Cornu et al. 2001) or costs of

biosynthesis or transport (Richmond 1970; Karlin and Translationally unpreferred amino acids that are main-
tained in these genes may be restricted to those thatBucher 1992; Lobry and Gautier 1994; Dufton 1997;

Craig and Weber 1998; Garat and Musto 2000; Jan- serve critical roles in protein function and may also be
evolutionarily conserved.sen and Gerstein 2000; Akashi and Gojobori 2002;

Zavala et al. 2002). Natural selection may have elevated Rates of protein evolution are also negatively corre-
lated with gene expression in plants (Wright et al.tRNA abundances for isoacceptors carrying metaboli-

cally favored amino acids so that translation selection 2002), mammals (Duret and Mouchiroud 2000; Iida
and Akashi 2000), and Drosophila (Betancourt andacts in the same direction as such preferences (Akashi

and Gojobori 2002). Presgraves 2002), suggesting that translation selection
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to mRNA concentration and protein length in Saccharomyces cere-may be a factor in protein divergence among multicellu-
visiae. Yeast 16: 1131–1145.lar eukaryotes. However, Duret and Mouchiroud Costanzo, M. C., J. D. Hogan, M. E. Cusick, B. P. Davis, A. M.

(2000) proposed that expression patterns are related Fancher et al., 2000 The yeast proteome database (YPD) and
Caenorhabditis elegans proteome database (WormPD): comprehen-to functional constraint. Proteins expressed in multiple
sive resources for the organization and comparison of modeltissues encounter a large number of chemical environ- organism protein information. Nucleic Acids Res. 28: 73–76.

ments and their primary structures may be constrained Craig, C. L., and R. S. Weber, 1998 Selection costs of amino acid
substitutions in ColE1 and ColIa gene clusters harbored by Esche-to avoid physical interactions with other proteins (Hast-
richia coli. Mol. Biol. Evol. 15: 774–776.ings 1996). Alternatively, proteins expressed in a Craig, C. L., C. Riekel, M. E. Herberstein, R. S. Weber, D. Kaplan

greater number of tissues or in a greater number of et al., 2000 Evidence for diet effects on the composition of silk
proteins produced by spiders. Mol. Biol. Evol. 17: 1904–1913.developmental stages may be more likely than tissue-

Crick, F. H., S. Brenner, A. Klug and G. Pieczenik, 1976 A specula-specific proteins to affect fitness. Both ideas relate rates tion on the origin of protein synthesis. Origins Life 7: 389–397.
of protein evolution to constraints on function. If the Datta, A., and S. Jinks-Robertson, 1995 Association of increased

spontaneous mutation rates with high levels of transcription ininterpretations proposed here are correct, then fitness
yeast. Science 268: 1616–1619.effects of amino acid changes related to the overall Davis, C. A., L. Grate, M. Spingola and M. Ares, Jr., 2000 Test of

physiology of cells, rather than the specific functions of intron predictions reveals novel splice sites, alternatively spliced
mRNAs and new introns in meiotically regulated genes of yeast.proteins, should also contribute to patterns of protein
Nucleic Acids Res. 28: 1700–1706.divergence and amino acid compositional differences Dufton, M. J., 1997 Genetic code synonym quotas and amino acid

among taxa. complexity: Cutting the cost of proteins? J. Theor. Biol. 187:
165–173.
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